Reaction Mechanism of Actin ATP Hydrolysis Studied by QM/MM Calculations

Yiwen Wang , Lirui Lin , Li-Yan Xu , En-Min Li , Geng Dong

Chemical Research in Chinese Universities ›› : 1 -7.

PDF
Chemical Research in Chinese Universities ›› : 1 -7. DOI: 10.1007/s40242-024-4089-2
Article

Reaction Mechanism of Actin ATP Hydrolysis Studied by QM/MM Calculations

Author information +
History +
PDF

Abstract

Actin fibers are an important part of the cytoskeleton, providing vital support for the plasma membrane. This function is driven by its ATPase (ATP: adenosine triphosphate) activity, i.e., ATP+H2O→ADP+Pi. This seemingly simple reaction has attracted much attention because the hydrolysis of ATP provides energy to support life processes. However, the reaction mechanism of ATP hydrolysis in actin is not clear. In order to gain deep insights into the functions of actin, it is essential to elucidate the reaction mechanism of the actin ATP hydrolysis. In this paper, we have studied the reaction mechanism of the ATP hydrolysis in actin by the combined quantum mechanical and molecular mechanics (QM/MM) calculations. Our results show that 1) bond cleavage of the P γ—OS of ATP and bond formation between oxygen of the lytic water and P γ atoms take place simultaneously, and this is the rate-limiting step of the hydrolysis; 2) the proton on the lytic water transfers to the phosphate to form H2P γO4 via one bridge water. The energy barrier of the complete reaction is 17.6 kcal/mol (1 kcal=4.184 kJ), which is in high agreement with the experimental value.

Keywords

Actin / Adenosine triphosphate (ATP) hydrolysis / Quantum mechanical and molecular mechanics (QM/MM) / Reaction mechanism

Cite this article

Download citation ▾
Yiwen Wang, Lirui Lin, Li-Yan Xu, En-Min Li, Geng Dong. Reaction Mechanism of Actin ATP Hydrolysis Studied by QM/MM Calculations. Chemical Research in Chinese Universities 1-7 DOI:10.1007/s40242-024-4089-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Blanchoin L, Pollard T D. Biochemistry, 2002, 41: 597.

[2]

Vorobiev S, Strokopytov B, Drubin D G, Frieden C, Ono S, Condeelis J, Rubenstein P A, Almo S C. Proc. Natl. Acad. Sci., 2003, 100: 5760.

[3]

Akola J, Jones R O. J. Phys. Chem. B, 200, 110: 8121.

[4]

Oda T, Iwasa M, Aihara T, Maéda Y, Narita A. Nature, 2009, 457: 441.

[5]

Pfaendtner J, Lyman E, Pollard T D, Voth G A. J. Mol. Biol., 2010, 396: 252.

[6]

Freedman H, Laino T, Curioni A. J. Chem. Theory Comput., 2012, 8: 3373.

[7]

McCullagh M, Saunders M G, Voth G A. J. Am. Chem. Soc., 2014, 136: 13053.

[8]

Kanematsua Y, Narita A, Odae T, Koike R, Ota M, Takano Y, Moritsugu K, Fujiwara I, Tanaka K, Komatsu H, Nagae T, Watanabe N, Iwasa M, Maeda Y, Takeda S. Proc. Natl. Acad. Sci., 2022, 119: 40.

[9]

Ogrizek M, Janežič M, Valjavec K, Perdih A. J. Chem. Inf. Model., 2022, 62: 3896.

[10]

Grigorenko B L, Rogov A V, Topol I A, Burt S K, Martinez H M, Nemukhin A V. Proc. Natl. Acad. Sci., 2007, 104: 7057.

[11]

Manna R N, Dutta M, Jana B. Phys. Chem. Chem. Phys., 2020, 22: 1534.

[12]

Parke C L, Wojcik E J, Kim S, Worthylake D K. J. Biol. Chem., 2010, 285: 5859.

[13]

Hayashi S, Ueno H, Shaikh A R, Umemura M, Kamiya M, Ito Y, Ikeguchi M, Komoriya Y, Iino R, Noji H. J. Am. Chem. Soc., 2012, 134: 8447.

[14]

Oosterheert W, Klink B U, Belyy A, Pospich S, Raunser S. Nature, 2022, 611: 374.

[15]

Yang Z, Lasker K, Schneidman-Duhovny D, Webb B, Huang C C, Pettersen E F, Goddard T D, Meng E C, Sali A, Ferrin T E. J. Struct. Biol., 2012, 179: 269.

[16]

Li H, Robertson A D, Jensen J H. Proteins, 2005, 61: 704.

[17]

Salomon-Ferrer R, Götz A W, Poole D, Le Grand S, Walker R C. J. Chem. Theory Comput., 2013, 9: 3878.

[18]

Maier J A, Martinez C, Kasavajhala K, Wickstrom L, Hauser K, Simmerling C. J. Chem. Theory Comput., 2015, 11: 3696.

[19]

Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L. J. Chem. Phys., 1983, 79: 926.

[20]

Götz A W, Williamson M J, Xu D, Poole D, Le Grand S, Walker R C. J. Chem. Theory Comput., 2012, 8: 1542.

[21]

Le Grand S, Götz A W, Walker R C. Comput. Phys. Commun., 2013, 184: 374.

[22]

Darden T, York D, Pedersen L. J. Chem. Phys., 1993, 98: 10089.

[23]

Lambrakos S G, Boris J P, Oran E S, Chandrasekhar I, Nagumo M. J. Comput. Phys., 1989, 85: 473.

[24]

Izaguirre J A, Catarello D P, Wozniak J M, Skeel R D. J. Chem. Phys., 2001, 114: 2090.

[25]

Perdew J P, Burke K, Ernzerhof M. Phys. Rev. Lett., 199, 77: 3865.

[26]

Schäfer A, Horn H, Ahlrichs R. J. Chem. Phys., 1992, 97: 2571.

[27]

Becke A D. Phys. Rev. A, 1988, 38: 3098.

[28]

Lee C, Yang W T, Parr R G. Phys. Rev. B, 1988, 37: 785.

[29]

Becke A D. J. Chem. Phys., 1993, 98: 5648.

[30]

Weigend F, Ahlrichs R. Phys. Chem. Chem. Phys., 2005, 7: 3297.

[31]

Neese F. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2022, 12: e1606.

[32]

Neese F. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2017, 8: e1327.

[33]

Sun R, Sode O, Dama J F, Voth G A. J. Chem. Theory Comput., 2017, 13: 2332.

[34]

Harrison C B, Schulten K. J. Chem. Theory Comput., 2012, 8: 2328.

[35]

Prasad B R, Plotnikov N V, Warshel A. J. Phys. Chem. B, 2013, 117: 153.

[36]

Wang C, Huang W T, Liao J L. J. Phys. Chem. B, 2015, 119: 3720.

[37]

McGrath M J, Kuo I F, Hayashi S, Takada S. J. Am. Chem. Soc., 2013, 135: 8908.

[38]

Admiraal S J, Herschlag D. Chem. Biol., 1995, 2: 729.

AI Summary AI Mindmap
PDF

185

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/