Multi-functional Hollow Structures for Intelligent Drug Delivery

Ping Hou, Nailiang Yang, Dan Wang

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (3) : 394-412. DOI: 10.1007/s40242-024-4082-9
Review

Multi-functional Hollow Structures for Intelligent Drug Delivery

Author information +
History +

Abstract

Multi-fountional hollow structures have emerged as promising platforms for intelligent drug delivery due to their unique properties, such as high loading capacities and programmed drug release. In particular, hollow multishell structures (HoMSs) with multilevel shell and space can regulate the molecular-level interaction between drugs and materials, so as to achieve the temporal-spatial order and sequential release of drugs. The anisotropic hollow structures can control the drug diffusion process by inducing the macroscopic interface flow through autonomous movement, realizing the targeted drug transport and release. In this paper, a key focus will be HoMSs with their temporal-ordered architectures and anisotropic hollow carriers with directional movement. Their synthesis mechanisms, structure-property relationships, smartly programmed drug delivery and biomedical applications will be discussed, providing insights into designing next-generation intelligent drug carriers.

Keywords

Hollow multishell structure / Anisotropic hollow structure / Intelligent drug carrier / Temporal-spatial order / Directional movement

Cite this article

Download citation ▾
Ping Hou, Nailiang Yang, Dan Wang. Multi-functional Hollow Structures for Intelligent Drug Delivery. Chemical Research in Chinese Universities, 2024, 40(3): 394‒412 https://doi.org/10.1007/s40242-024-4082-9

References

[1]
Duan L, Yang L, Jin J, Yang F, Liu D, Hu K, Wang Q, Yue Y, Gu N. . Theranostics, 2020, 10: 462,
CrossRef Google scholar
[2]
Sanjay S T, Zhou W, Dou M, Tavakoli H, Ma L, Xu F, Li X. . Adv. Drug. Deliv. Rev., 2018, 128: 3,
CrossRef Google scholar
[3]
Han L, Zheng Y, Luo H, Feng J, Engstler R, Xue L, Jing G, Deng X, Del Campo A, Cui J. . Angew. Chem. Int. Ed., 2020, 59: 5611,
CrossRef Google scholar
[4]
Yuan M W, Shi S L, Luo Y P, Yu Y, Wang S H, Chen C. . Chem. Res. Chinese Universities, 2022, 38: 999,
CrossRef Google scholar
[5]
Yan T, He J, Liu R, Liu Z, Cheng J. . Carbohydr. Polym., 2020, 231: 115706,
CrossRef Google scholar
[6]
van der Meel R, Sulheim E, Shi Y, Kiessling F, Mulder W J M, Lammers T. . Nat. Nanotechnol., 2019, 14: 1007,
CrossRef Google scholar
[7]
Liu Q, Xu N, Liu L, Li J, Zhang Y, Shen C, Shezad K, Zhang L, Zhu J, Tao J. . ACS Appl. Mater. Interfaces, 2017, 9: 21673,
CrossRef Google scholar
[8]
Li L, Liu T, Fu C, Meng X, Liu H. . J. Nanosci. Nanotechnol., 2016, 16: 6766,
CrossRef Google scholar
[9]
Yang G, Xu L, Xu J, Zhang R, Song G, Chao Y, Feng L, Han F, Dong Z, Li B, Liu Z. . Nano Lett., 2018, 18: 2475,
CrossRef Google scholar
[10]
Qiao Y, Wan J, Zhou L, Ma W, Yang Y, Luo W, Yu Z, Wang H. . Nanobiotechnol., 2019, 11: e1527
[11]
Wu J, Ma G. . J. Control. Release, 2019, 303: 101,
CrossRef Google scholar
[12]
Wang J, Wan J, Yang N, Li Q, Wang D. . Nat. Rev. Chem., 2020, 4: 159,
CrossRef Google scholar
[13]
Wang J, Wan J, Wang D. . Acc. Chem. Res., 2019, 52: 2169,
CrossRef Google scholar
[14]
Wang Z, Qi J, Yang N, Yu R, Wang D. . Mater. Chem. Front., 2021, 5: 1126,
CrossRef Google scholar
[15]
Wang L, Wan J, Wang J, Wang D. . Small Struct., 2020, 2: 2000041,
CrossRef Google scholar
[16]
Zhao X L, Yang M, Wang J Y, Wang D. . Chem. Res. Chinese Universities, 2023, 39: 630,
CrossRef Google scholar
[17]
Han W S, Wang Y L, Wan J W, Wang D. . Chem. Res. Chinese Universities, 2022, 38: 117,
CrossRef Google scholar
[18]
Ge W. J., Chen X. C., Ma R. Z., Zheng S. Y., Shang N. Z., Zhao X. X., Chem. Res. Chinese Universities, 2024, https://doi.org/10.1007/s40242-024-3278-3.
[19]
Hortelão A C, Patiño T, Perez-Jiménez A, Blanco À, Sánchez S. . Adv. Funct. Mater., 2018, 28: 1705086,
CrossRef Google scholar
[20]
Chen H, Li T, Liu Z, Tang S, Tong J, Tao Y, Zhao Z, Li N, Mao C, Shen J, Wan M. . Nat. Commun., 2023, 14: 941,
CrossRef Google scholar
[21]
Kwak M, Jung I, Kang Y G, Lee D K, Park S. . Nanoscale, 2018, 10: 18690,
CrossRef Google scholar
[22]
Xu X, Kim K, Fan D. . Angew. Chem. Int. Ed., 2015, 54: 2525,
CrossRef Google scholar
[23]
Nie C P, Ma T R, Chen T T, Chu X. . Chem. Res. Chinese Universities, 2024, 40: 333,
CrossRef Google scholar
[24]
Fusi A D, Li Y, Llopis A, Patiño T, van Hest J C M, Abdelmohsen L K E A. . Angew. Chem. Int. Ed., 2022, 62: e202214754,
CrossRef Google scholar
[25]
Qiu J, Xu J, Xia Y. . Adv. Healthc. Mater., 2021, 10: e2000587,
CrossRef Google scholar
[26]
Fu J, An D, Song Y, Wang C, Qiu M, Zhang H. . Coordination Chem. Rev., 2020, 422: 213467,
CrossRef Google scholar
[27]
Noriaki S. . Mater. Chem. Phys., 2004, 88: 235,
CrossRef Google scholar
[28]
Li Z, Lai X, Wang H, Mao D, Wang D. . J. Phys. Chem. C, 2009, 113: 2792,
CrossRef Google scholar
[29]
Wang J, Cui Y, Wang D. . Nanoscale Horiz., 2020, 5: 1287,
CrossRef Google scholar
[30]
Zhao X, Wang J, Yu R, Wang D. . J. Am. Chem. Soc., 2018, 140: 17114,
CrossRef Google scholar
[31]
Zhao X, Yu R, Tang H, Mao D, Qi J, Wang B, Zhang Y, Zhao H, Hu W, Wang D. . Adv. Mater., 2017, 29: 1700550,
CrossRef Google scholar
[32]
Dong Z, Ren H, Hessel C M, Wang J, Yu R, Jin Q, Yang M, Hu Z, Chen Y, Tang Z, Zhao H, Wang D. . Adv. Mater., 2014, 26: 905,
CrossRef Google scholar
[33]
Dong Z, Lai X, Halpert J E, Yang N, Yi L, Zhai J, Wang D, Tang Z, Jiang L. . Adv. Mater., 2012, 24: 1046,
CrossRef Google scholar
[34]
Salhabi E H M, Zhao J, Wang J, Yang M, Wang B, Wang D. . Angew. Chem. Int. Ed., 2019, 58: 9078,
CrossRef Google scholar
[35]
Bi R, Xu N, Ren H, Yang N, Sun Y, Cao A, Yu R, Wang D. . Angew. Chem. Int. Ed., 2020, 59: 4865,
CrossRef Google scholar
[36]
You F, Wan J, Qi J, Mao D, Yang N, Zhang Q, Gu L, Wang D. . Angew. Chem. Int. Ed., 2019, 59: 721,
CrossRef Google scholar
[37]
Zhang J, Wan J, Wang J, Ren H, Yu R, Gu L, Liu Y, Feng S, Wang D. . Angew. Chem. Int. Ed., 2019, 58: 5266,
CrossRef Google scholar
[38]
Hou P, Li D, Yang N, Wan J, Zhang C, Zhang X, Jiang H, Zhang Q, Gu L, Wang D. . Angew. Chem. Int. Ed., 2021, 60: 6926,
CrossRef Google scholar
[39]
Wang H, Qi J, Yang N, Cui W, Wang J, Li Q, Zhang Q, Yu X, Gu L, Li J, Yu R, Huang K, Song S, Feng S, Wang D. . Angew. Chem. Int. Ed., 2020, 59: 19691,
CrossRef Google scholar
[40]
Wei Y, Cheng Y, Zhao D, Feng Y, Wei P, Wang J, Ge W, Wang D. . Angew. Chem. Int. Ed., 2023, 62: e202302621,
CrossRef Google scholar
[41]
Wang W, Zheng T, Zhang M, Zhang Q, Wu F, Liu Y, Zhang L, Zhang J, Wang M, Sun Y. . Biomate. Sci., 2020, 8: 1748,
CrossRef Google scholar
[42]
Li Z, Xu K, Qin L, Zhao D, Yang N, Wang D, Yang Y. . Adv. Mater., 2023, 35: 2203890,
CrossRef Google scholar
[43]
Ma X, Zhang X, Yang L, Wang G, Jiang K, Wu G, Cui W, Wei Z. . Nanoscale, 2016, 8: 8687,
CrossRef Google scholar
[44]
Conley B M, Pongkulapa T, Lee K-B. . Chem, 2020, 6: 2875,
CrossRef Google scholar
[45]
Gao Y, Ji X, He X, Yin Q, Zhang Z, Shi J, Li Y. . ACS Nano, 2011, 5: 9788,
CrossRef Google scholar
[46]
Yang Y, Lu Y, Abbaraju P L, Zhang J, Zhang M, Xiang G, Yu C. . Angew. Chem. Int. Ed., 2017, 56: 8446,
CrossRef Google scholar
[47]
Xia Y, Na X, Wu J, Ma G. . Adv. Mater., 2019, 31: e1801159,
CrossRef Google scholar
[48]
Wang D. . Adv. Mater., 2019, 31: e1904886,
CrossRef Google scholar
[49]
Zhao D, Yang N, Wei Y, Jin Q, Wang Y, He H, Yang Y, Han B, Zhang S, Wang D. . Nat. Commun., 2020, 11: 4450,
CrossRef Google scholar
[50]
Liu D, Wan J, Pang G, Tang Z. . Adv. Mater., 2019, 31: e1803291,
CrossRef Google scholar
[51]
Yang G, Xu L, Chao Y, Xu J, Sun X, Wu Y, Peng R, Liu Z. . Nat. Commun., 2017, 8: 902,
CrossRef Google scholar
[52]
Fulda S, Galluzzi L, Kroemer G. . Nat. Rev. Drug. Discov., 2010, 9: 447,
CrossRef Google scholar
[53]
Tan S, Long Y, Han Q, Guan H, Liang Q, Ding M. . ACS Biomate. Sci. Engineer., 2020, 6: 1387,
CrossRef Google scholar
[54]
Zhao D, Wei Y, Jin Q, Yang N, Yang Y, Wang D. . Angew. Chem. Int. Ed., 2022, 61: e202206807,
CrossRef Google scholar
[55]
Hao N, Nie Y, Zhang J X J. . Micropor. Mesopor. Mater., 2018, 261: 144,
CrossRef Google scholar
[56]
Ma X, Zhang X, Yang L, Wang G, Jiang K, Wu G, Cui W, Wei Z. . Nanoscale, 2016, 8: 8687,
CrossRef Google scholar
[57]
Cheng K, Sun Z, Zhou Y, Zhong H, Kong X, Xia P, Guo Z, Chen Q. . Biomater. Sci., 2013, 1: 965,
CrossRef Google scholar
[58]
Soares S F, Fernandes T, Daniel-da-Silva A L, Trindade T. . Proc. Math. Phys. Eng. Sci., 2019, 475: 20180677
[59]
Zhou Y, Han Y, Li G, Yang S, Xiong F, Chu F. . Nanomaterials, 2019, 9: 188,
CrossRef Google scholar
[60]
Huang C C, Huang W, Yeh C S. . Biomaterials, 2011, 32: 556,
CrossRef Google scholar
[61]
Yu L, Yu X Y, Lou X W. . Adv. Mater., 2018, 30: 1800939,
CrossRef Google scholar
[62]
Wu X, Si Y S, Zou Y B, Mao Y T, Li Q J, Zhou S X, Chen M, Wu L M. . ACS Appl. Mater. Interfaces, 2018, 10: 31664,
CrossRef Google scholar
[63]
Wang Z H, Qiu T, Guo L H, Ye J, He L F, Li X Y. . Chem. Eng. J., 2019, 357: 348,
CrossRef Google scholar
[64]
Bentz K C, Savin D A. . Poly. Chem., 2018, 9: 2059,
CrossRef Google scholar
[65]
Qiu J, Huo D, Xue J, Zhu G, Liu H, Xia Y. . Angew. Chem. Int. Ed., 2019, 58: 10606,
CrossRef Google scholar
[66]
Arqué X, Romero-Rivera A, Feixas F, Patiño T, Osuna S, Sánchez S. . Nat. Comm., 2019, 10: 2826,
CrossRef Google scholar
[67]
Kwon T, Kumari N, Kumar A, Lim J, Son C Y, Lee I S. . Angew. Chem. Int. Ed., 2021, 60: 17579,
CrossRef Google scholar
[68]
Sun J, Fu Y, Li R, Feng W. . Chem. Mater., 2018, 30: 1625,
CrossRef Google scholar
[69]
Xu J, Ma A, Xu Z, Liu X, Chu D, Xu H. . J. Phy. Chem. C., 2015, 119: 28055,
CrossRef Google scholar
[70]
Xu D, Zhou C, Zhan C, Wang Y, You Y, Pan X, Jiao J, Zhang R, Dong Z, Wang W, Ma X. . Adv. Func. Mater., 2019, 29: 1807727,
CrossRef Google scholar
[71]
Hyun D C, Lu P, Choi S I, Jeong U, Xia Y. . Angew. Chem. Int. Ed., 2013, 52: 10468,
CrossRef Google scholar
[72]
Guan B Y, Yu L, Lou X W. . Adv. Sci., 2017, 4: 1700247,
CrossRef Google scholar
[73]
Zhang Y, Chen J-J, Zhang G-H, Chen B-X, Yan H-S. . Chinese J. Poly. Sci., 2012, 31: 294,
CrossRef Google scholar
[74]
Hyuk Im S, Jeong U, Xia Y. . Nat. Mater., 2005, 4: 671,
CrossRef Google scholar
[75]
Xiong F, Han Y, Wang S, Li G, Qin T, Chen Y, Chu F. . ACS Sustain. Chem. Eng., 2017, 5: 2273,
CrossRef Google scholar
[76]
Ortiz-Rivera I, Mathesh M, Wilson D A. . Acc. Chem. Res., 2018, 51: 1891,
CrossRef Google scholar
[77]
Cai L, Wang H, Yu Y, Bian F, Wang Y, Shi K, Ye F, Zhao Y. . Nat. Sci. Rev., 2020, 7: 644,
CrossRef Google scholar
[78]
Wilson D A, Nolte R J, van Hest J C. . Nat. Chem., 2012, 4: 268,
CrossRef Google scholar
[79]
Wilson D A, Nolte R J M, van Hest J C M. . J. Am. Chem. Soc., 2012, 134: 9894,
CrossRef Google scholar
[80]
Abdelmohsen L K, Nijemeisland M, Pawar G M, Janssen G J, Nolte R J, van Hest J C, Wilson D A. . ACS Nano, 2016, 10: 2652,
CrossRef Google scholar
[81]
Adawy A, Amghouz Z, van Hest J C M, Wilson D A. . Small, 2017, 13: 1700642,
CrossRef Google scholar
[82]
Kim K T, Zhu J H, Meeuwissen S A, Cornelissen J J L M, Pochan D J, Nolte R J M, van Hest J C M. . J. Am. Chem. Soc., 2010, 132: 12522,
CrossRef Google scholar
[83]
Tu Y, Peng F, André A A M, Men Y, Srinivas M, Wilson D A. . ACS Nano, 2017, 11: 1957,
CrossRef Google scholar
[84]
Tu Y, Peng F, White P B, Wilson D A. . Angew. Chem. Int. Ed., 2017, 56: 7620,
CrossRef Google scholar
[85]
Shao J, Cao S, Che H, De Martino M T, Wu H, Abdelmohsen L, van Hest J C M. . J. Am. Chem. Soc., 2022, 144: 11246,
CrossRef Google scholar
[86]
Peng F, Tu Y, Men Y, van Hest J C M, Wilson D A. . Adv. Mat., 2016, 29: 1604996,
CrossRef Google scholar
[87]
Mathesh M, Sun J, van der Sandt F, Wilson D A. . Nanoscale, 2020, 12: 22495,
CrossRef Google scholar
[88]
Shao J, Pijpers I A B, Cao S, Williams D S, Yan X, Li J, Abdelmohsen L K E A, van Hest J C M. . Adv. Sci., 2019, 6: 1801678,
CrossRef Google scholar
[89]
Tu Y, Peng F, Sui X, Men Y, White P B, van Hest J C M, Wilson D A. . Nat. Chem., 2017, 9: 480,
CrossRef Google scholar
[90]
Toebes B J, Cao F, Wilson D A. . Nat. Commun., 2019, 10: 5308,
CrossRef Google scholar
[91]
Park S H, Kim J, Lee W-E, Byun DJ, Kim M H. . Langmuir, 2017, 33: 2275,
CrossRef Google scholar
[92]
Kim D H, Woo H-C, Kim M H. . Langmuir, 2019, 35: 13700,
CrossRef Google scholar
[93]
Liang J, Kong J, Zhang J. . Chem. Electro. Chem., 2021, 8: 172
[94]
Yi D L, Zhang Q, Liu Y H, Song J Y, Tang Y, Caruso F, Wang Y J. . Angew. Chem. Int. Ed., 2016, 55: 14733,
CrossRef Google scholar
[95]
Qiu B l, Xie L, Zeng J, Liu T Y, Yan M, Zhou S, Liang Q R, Tang J Y, Liang K, Kong B. . Adv. Funct. Mater., 2021, 31: 2010694,
CrossRef Google scholar
[96]
Jiang S, Kaltbeitzel A, Hu M, Suraeva O, Crespy D, Landfester K. . ACS Nano, 2019, 14: 498,
CrossRef Google scholar
[97]
Chen C H, Wang H Y, Han C L, Deng J, Wang J, Li M M, Tang M H, Jin H Y, Wang Y. . J. Am. Chem. Soc., 2017, 139: 2657,
CrossRef Google scholar
[98]
Gao C, Zhou C, Lin Z, Yang M, He Q. . ACS Nano, 2019, 13: 12758,
CrossRef Google scholar
[99]
Zhou C, Gao C, Wu Y, Si T, Yang M, He Q. . Angew. Chem. Int. Ed., 2022, 61: e202116013,
CrossRef Google scholar
[100]
Liu T, Xie L, Zeng J, Yan M, Qiu B, Wang X, Zhou S, Zhang X, Zeng H, Liang Q, He Y, Liang K, Liu J, Velliou E, Jiang L, Kong B. . ACS Appl. Mater. Interfaces, 2022, 14: 15517,
CrossRef Google scholar
[101]
Dey K K, Sen A. . J. Am. Chem. Soc., 2017, 13: 7666,
CrossRef Google scholar
[102]
Lyu X, Liu X, Zhou C, Duan S, Xu P, Dai J, Chen X, Peng Y, Cui D, Tang J, Ma X, Wang W. . J. Am. Chem. Soc., 2021, 143: 12154,
CrossRef Google scholar
[103]
Paxton W F, Baker P T, Kline T R, Wang Y, Mallouk T E, Sen A. . J. Am. Chem. Soc., 2006, 128: 14881,
CrossRef Google scholar
[104]
Jun I K, Hess H. . Adv. Mater., 2010, 22: 4823,
CrossRef Google scholar
[105]
Paxton W F, Kistler K C, Olmeda C C, Sen A, St Angelo S K, Cao Y, Mallouk T E, Lammert P E, Crespi V H. . J. Am. Chem. Soc., 2004, 126: 13424,
CrossRef Google scholar
[106]
Anderson J L, Lowell M E, Prieve D C. . J. Fluid Mech., 1982, 117: 107,
CrossRef Google scholar
[107]
Zhang Y F, Hess H. . Nat. Rev. Chem., 2021, 5: 500,
CrossRef Google scholar
[108]
Xiong K, Lin J, Chen Q, Gao T, Xu L, Guan J. . Matter, 2023, 6: 907,
CrossRef Google scholar
[109]
Prieve D C, Ebel J P, Lowell M E. . J. Fluid. Mech., 1984, 148: 247,
CrossRef Google scholar
[110]
Gao W, Pei A, Dong R, Wang J. . J. Am. Chem. Soc., 2014, 136: 2276,
CrossRef Google scholar
[111]
Huang W, Manjare M, Zhao Y. . J. Phy. Chem. C, 2013, 117: 21590,
CrossRef Google scholar
[112]
Fletcher N H. . J. Chem. Phy., 1958, 29: 572,
CrossRef Google scholar
[113]
Nourhani A, Karshalev E, Soto F, Wang J. . Research, 2020, 2020: 7823615,
CrossRef Google scholar
[114]
Ma X, Hortelao A C, Miguel-Lopez A, Sanchez S. . J. Am. Chem. Soc., 2016, 138: 13782,
CrossRef Google scholar
[115]
Wang T, Zheng M, Wang L, Ji L, Wang S. . Nanotechnology, 2020, 31: 355504,
CrossRef Google scholar
[116]
Liu M, Chen L, Zhao Z, Liu M, Zhao T, Ma Y, Zhou Q, Ibrahim Y S, Elzatahry A A, Li X, Zhao D. . J. Am. Chem. Soc., 2022, 144: 3892,
CrossRef Google scholar
[117]
Xie L, Yan M, Liu T, Gong K, Luo X, Qiu B, Zeng J, Liang Q, Zhou S, He Y, Zhang W, Jiang Y, Yu Y, Tang J, Liang K, Zhao D, Kong B. . J. Am. Chem. Soc., 2022, 144: 1634,
CrossRef Google scholar
[118]
Xing Y, Zhou M, Xu T. . Angew. Chem. Int. Ed., 2020, 59: 1436
[119]
Agudo-Canalejo J, Illien P, Golestanian R. . Nano Lett., 2018, 18: 2711,
CrossRef Google scholar
[120]
Schurr J M, Fujimoto B S, Huynh L, Chiu D T. . J. Phy. Chem. B., 2013, 117: 7626,
CrossRef Google scholar
[121]
Baraban L, Harazim S M, Sanchez S, Schmidt O G. . Angew. Chem. Int. Ed., 2013, 52: 5552,
CrossRef Google scholar
[122]
Peng F, Tu Y, van Hest J C M, Wilson D A. . Angew. Chem. Int. Ed., 2015, 54: 11662,
CrossRef Google scholar
[123]
Ma X, Hahn K, Sanchez S. . J. Am. Chem. Soc., 2015, 137: 4976,
CrossRef Google scholar
[124]
Ji Y, Lin X, Wu Z, Wu Y, Gao W, He Q. . Angew. Chem. Int. Ed., 2019, 58: 12200,
CrossRef Google scholar
[125]
Zhou C, Gao C, Wu Y, Si T, Yang M, He Q. . Angew. Chem. Int. Ed., 2022, 61: 355504
[126]
Mou F, Xie Q, Liu J, Che S, Bahmane L, You M, Guan J. . Nat. Sci. Rev., 2021, 8: nwab066,
CrossRef Google scholar
[127]
Joseph A, Claudia Contini C, Denis Cecchin D, Sophie Nyberg S, Ruiz-Perez L, Gaitzsch J, Fullstone G, Tian X, Battaglia G. . Sci. Adv., 2017, 3: e1700362,
CrossRef Google scholar
[128]
Popescu M N, Uspal W E, Bechinger C, Fischer P. . Nano Lett., 2018, 18: 5345,
CrossRef Google scholar
[129]
Liebchen B, Lowen H. . Acc. Chem. Res., 2018, 51: 2982,
CrossRef Google scholar
[130]
Mathesh M, Sun J, Wilson D A. . J. Mater. Chem. B, 2020, 8: 7319,
CrossRef Google scholar
[131]
Mathesh M, Bhattarai E, Yang W. . Angew. Chem. Int. Ed., 2022, 61: e202113801,
CrossRef Google scholar
[132]
Liu T, Xie L, Price C H, Liu J, He Q, Kong B. . Chem. Soc. Rev., 2022, 51: 10083,
CrossRef Google scholar
[133]
Hu S, Shao S, Chen H, Sun J, Zhai J, Zheng H, Wan M, Liu Y, Mao C, Zhao J. . J. Phy. Chem. C, 2018, 122: 9680,
CrossRef Google scholar
[134]
Ma X, Jang S, Popescu M N, Uspal W E, Miguel-Lopez A, Hahn K, Kim D P, Sanchez S. . ACS Nano, 2016, 10: 8751,
CrossRef Google scholar
[135]
Tan H, Chen B, Liu M, Jiang J, Ou J, Liu L, Wang F, Ye Y, Gao J, Sun J, Peng F, Tu Y. . Chem. Eng. J., 2022, 448: 137689,
CrossRef Google scholar
[136]
Chen S, Sun X, Fu M, Liu X, Pang S, You Y, Liu X, Wang Y, Yan X, Ma X. . Biomaterials, 2022, 288: 121744,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/