Rh-loaded High-entropy Oxide for Efficiently Catalyzing the Reverse Water-Gas Shift Reaction

Ke Wang , Rui Zhang , Huilin Wang , Lingling Zhang , Zijian Wang , Xiao Wang , Shuyan Song , Hongjie Zhang

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (6) : 970 -977.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (6) : 970 -977. DOI: 10.1007/s40242-024-4079-4
Article

Rh-loaded High-entropy Oxide for Efficiently Catalyzing the Reverse Water-Gas Shift Reaction

Author information +
History +
PDF

Abstract

Establishing efficient CO2 hydrogenation technology based on the reverse water-gas shift (RWGS) reaction can effectively alleviate environmental problems while providing high-value-added products. The development of suitable advanced supports is the key to improving the catalytic activity and selectivity. Herein, we designed and synthesized a new type of spinel-phase high entropy oxides [(FeCrMnAlGa)3O4-x, FMG], which exhibited remarkable RWGS performance after loading small-size Rh nanoparticles. The CO yield was as high as 145.5 μmolCO·gcat −1· at 380 °C and the CO selectivity was nearly 100%. Moreover, the catalyst retained over 95% of the initial activity after 25 h of continuous catalyzing. Experimental and structural studies reveal that the FMG support has elemental synergy and high-entropy stability, which affect the Rh dispersion and oxygen vacancy generation, in turn achieving superior catalytic performance.

Keywords

High entropy oxide (HEO) / Reverse water-gas shift (RWGS) / Size effect / Elemental synergy

Cite this article

Download citation ▾
Ke Wang, Rui Zhang, Huilin Wang, Lingling Zhang, Zijian Wang, Xiao Wang, Shuyan Song, Hongjie Zhang. Rh-loaded High-entropy Oxide for Efficiently Catalyzing the Reverse Water-Gas Shift Reaction. Chemical Research in Chinese Universities, 2024, 40(6): 970-977 DOI:10.1007/s40242-024-4079-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tountas A A, Ozin G A, Sain M M. Nat. Catal., 2021, 4: 934

[2]

Su X, Yang X, Zhao B, Huang Y. J. Energy Chem., 2017, 26: 854

[3]

Williamson D L, Herdes C, Torrente-Murciano L, Jones M D, Mattia D. ACS Sustainable Chem. Eng., 2019, 7: 7395

[4]

Chen Y, Ma L, Zhang R, Ye R, Liu W, Wei J, Ordomsky V V, Liu J. Appl. Catal. B, 2022, 312: 121393

[5]

Zhang R, Wang X, Wang K, Wang H, Liu L, Wu X, Geng B, Chu X, Song S, Zhang H. Adv. Energy Mater., 2023, 13: 2203806

[6]

Zhang R, Wang X, Wang K, Wang H, Song S, Zhang H. Mater. Chem. Front., 2023, 7: 6411

[7]

Millet M-M, Tarasov A V, Girgsdies F, Algara-Siller G, Schloegl R, Frei E. ACS Catal., 2019, 9: 8534

[8]

Xu J, Wang Y, Wang K, Zhao M, Zhang R, Cui W, Liu L, Bootharaju M S, Kim J H, Hyeon T, Zhang H, Wang Y, Song S, Wang X. Angew. Chem., Int. Ed., 2023, 62: e202302877

[9]

Wang J, Li G, Li Z, Tang C, Feng Z, An H, Liu H, Liu T, Li C. Sci. Adv., 2017, 3: e1701290A

[10]

Chen Z, Jiang Q, An H, Zhang J, Hao S, Li X, Cai L, Yu W, You K, Zhu X, Li C. ACS Catal., 2022, 12: 7719

[11]

Kattel S, Liu P, Chen J G. J. Am. Chem. Soc., 2017, 139: 9739

[12]

Cisneros S, Chen S, Fauth C, Abdel-Mageed A M, Pollastri S, Bansmann J, Olivi L, Aquilanti G, Atia H, Rabeah J, Parlinska- W M, Brückner A, Behm R. Appl. Catal., 2022, 317: 121748

[13]

Wang Q, Liu X, He D, Wang D. Mater. Today, 2023, 70: 218

[14]

Wang Y, Mi J, Wu Z-S. Chem Catal., 2022, 2: 1624

[15]

Ye L, Chen M, Niu L, Gong Y, Li C. Chem. Eng. J., 2024, 480: 148122

[16]

Pan Y, Liu J-X, Tu T-Z, Wang W, Zhang G-J. Chem. Eng. J., 2023, 451: 138659

[17]

Kante M V, Weber M L, Ni S, van den Bosch I C G, van der Minne E, Heymann L, Falling L J, Gauquelin N, Tsvetanova M, Cunha D M, Koster G, Gunkel F, Nemšák S, Hahn H, Estrada L, Baeumer C. Acs Nano, 2023, 17: 5329

[18]

Feng D, Dong Y, Zhang L, Ge X, Zhang W, Dai S, Qiao Z-A. Angew. Chem. Int. Ed., 2020, 59: 19503

[19]

Xu H, Zhang Z, Liu J, Chi-Linh D-T, Chen H, Xu S, Lin Q, Jiao Y, Wang J, Wang Y, Chen Y, Dai S. Nat. Commun., 2020, 11: 3908

[20]

Chen H, Jie K, Jafta C J, Yang Z, Yao S, Liu M, Zhang Z, Liu J, Chi M, Fu J, Dai S. Appl. Catal., B, 2020, 276: 119155

[21]

Fan M-Y, Wang J-J, Zhao J, Zhang H, Ma T-Y, Han X-P, Hu W-B. Rare Met., 2024, 43: 1537

[22]

Chen H, Lin W, Zhang Z, Jie K, Mullins D R, Sang X, Yang S-Z, Jafta C J, Bridges C A, Hu X, Unocic R, Fu J, Zhang P, Dai S. ACS Mater. Lett., 2019, 1: 83

[23]

Zhu S, Chen Y, Somayaji V, Novello P, Chacko D, Li F, Liu J. ACS Appl. Mater. Interfaces, 2023, 15: 31384

[24]

Zhao J, Bao J, Yang S, Niu Q, Xie R, Zhang Q, Chen M, Zhang P, Dai S. Acs Catal., 2021, 11: 12247

[25]

Portillo E, Gandara-Loe J, Reina T R, Pastor-Perez L. Sci. Total Environ., 2023, 857: 159394

[26]

Elsernagawy O Y H, Hoadley A, Patel J, Bhatelia T, Lim S, Haque N, Li C E. J. CO2 Util., 2020, 41: 101280

[27]

Wang H, Gao Z, Sun B, Mu S, Dang F, Guo X, Ma D, Shi C. Chem. Catal., 2023, 3: 100768

[28]

Fracchia M, Manzoli M, Anselmi-Tamburini U, Ghigna P. Scr. Mater., 2020, 188: 26

[29]

Yang Y, Liu J, Liu F, Wu D. Fuel, 2020, 276: 118093

[30]

Wang C, Sun H, Liu X, Jin X, Feng Y, Shi H, Wang D, Zhang Y, Wang Y, Yan Z. Fuel, 2023, 345: 128238

[31]

Liao W, Yue M, Chen J, Wang Z, Ding J, Xu Y, Bai Y, Liu X, Jia A, Huang W, Zhang Z. ACS Catal., 2023, 13: 5767

[32]

Yan B, Wu Q, Cen J, Timoshenko J, Frenkel A I, Su D, Chen X, Paris J B, Stach E, Orlov A, Chen JG. Appl. Catal. B, 2018, 237: 1003

[33]

Yentekakis I V, Goula G, Hatzisymeon M, Betsi-Argyropoulou I, Botzolaki G, Kousi K, Kondarides D I, Taylor M J, Parlett C M A, Osatiashtiani A, Kyriakou G, Holgado J, Lambert R. Appl. Catal., 2019, 243: 490

[34]

Dostagir N H M, Rattanawan R, Gao M, Ota J, Hasegawa J-Y, Asakura K, Fukouka A, Shrotri A. ACS Catal., 2021, 11: 9450

[35]

Bagus P S, Nelin C J, Brundle C R, Crist B V, Lahiri N, Rosso K M. J. Chem. Phys., 2021, 154: 094709

[36]

Ünveren E, Kemnitz E, Hutton S, Lippitz A, Unger W E S. Surf. Interface Anal., 2004, 36: 92

[37]

Penke Y K, Anantharaman G, Ramkumar J, Kar K K. J. Hazard. Mater., 2019, 364: 519

[38]

Tago T, Kataoka N, Tanaka H, Kinoshita K, Kishida S. Procedia Eng., 2017, 216: 175

[39]

Zhang X, Huang H, Zhang Y, Liu D, Tong N, Lin J, Chen L, Zhang Z, Wang X. ACS Omega, 2018, 3: 14469

[40]

Khanchi M, Mousavian S M A, Soltanali S. Int. J. Energy Res., 2022, 46: 3057

[41]

Bao H, Sun X, Jiang Z, Huang Y, Wang J. Chin. J. Catal., 2014, 35: 1418

[42]

Chen H, Sun Y, Yang S, Wang H, Dmowski W, Egami T, Dai S. Chem. Commun., 2020, 56: 15056

[43]

Zhang M, Duan X, Gao Y, Zhang S, Lu X, Luo K, Ye J, Wang X, Niu Q, Zhang P, Dai S. ACS Appl. Mater. Interfaces, 2023, 15: 45774

AI Summary AI Mindmap
PDF

171

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/