Gas-Liquid Interfacial Deposition Synthesis of Alumina with Large Mesopores

Yu Zhang , Wen-Cui Li , Yuenan Zheng , Haowei Wang , Fan Wu , Wenrui Zhang , An-Hui Lu

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (6) : 1179 -1191.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (6) : 1179 -1191. DOI: 10.1007/s40242-024-4069-6
Article

Gas-Liquid Interfacial Deposition Synthesis of Alumina with Large Mesopores

Author information +
History +
PDF

Abstract

The porous structure of alumina is influenced by various factors during the synthesis process. In this study, we proposed a gasliquid interfacial deposition method, different from conventional liquid-phase reactions, which effectively slows down the precipitation rate, facilitating the investigation of the pore structure and morphology changes of alumina during the synthesis process. Ammonia (NH3) and carbon dioxide (CO2) generated by the decomposition of inorganic ammonium salts constitute the gas phase, while the aqueous solution of the inorganic aluminum salt serves as the liquid phase. The gas diffuses, contacts, dissolves and reacts with the inorganic aluminum salt solution, constructing a platform for gas-liquid interfacial deposition at the gas-liquid interface. We precisely regulated the critical factors that affected the precipitation rate during the reaction process, such as gas-liquid reaction methods, precipitant types, aluminum salt types, and reaction temperatures, leading to systematic changes in the pore structures of the obtained alumina. After considering the influence of precipitation rate, pH value, and anion types, we found that the fundamental factor affecting pore structure lies in the water content of the precursors. By controlling the phase and crystallinity of the precursors, alumina with a large mesopore size distribution concentrated at 25.3 nm can be obtained.

Keywords

Gas-liquid reaction / Large mesopore / AlOOH / Alumina

Cite this article

Download citation ▾
Yu Zhang, Wen-Cui Li, Yuenan Zheng, Haowei Wang, Fan Wu, Wenrui Zhang, An-Hui Lu. Gas-Liquid Interfacial Deposition Synthesis of Alumina with Large Mesopores. Chemical Research in Chinese Universities, 2024, 40(6): 1179-1191 DOI:10.1007/s40242-024-4069-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Geng L, Xue D, Yao J, Dai Q, Sun H, Zhu D, Rong Z, Fang R, Zhang X, Su Y, Yan J, Harris S J, Ichikawa S, Zhang L, Tang Y, Zhang S, Huang J. Energy & Environmental Science, 2023, 16: 2658

[2]

Ryan H P, Haynes C J E, Smith A, Grommet A B, Nitschke J R. Adv. Mater., 2021, 33: e2004192

[3]

Alsalbokh M, Fakeri N, Lawson S, Rownaghi A A, Rezaei F. Chem. Eng. J., 2021, 415: 128969

[4]

Poths P, Li G, Masubuchi T, Morgan H W T, Zhang Z, Alexandrova A N, Anderson S L. ACS Catal., 2023, 13: 1533

[5]

Wu Q, Yan J, Jiang M, Dai Q, Wu J, Ha M N, Ke Q, Wang X, Zhan W. Applied Catalysis B: Environmental, 2021, 286: 119949

[6]

Yu Z L, Chen Y M, Niu Y J, Tang Y, Wan P Y, Lv Z J, Yang X J. Angew. Chem. Int. Ed., 2011, 50: 11719

[7]

Zhang Y, Nagamori S, Yamaguchi M, Rengakuji S, Tsubaki N. Catal. Commun., 2008, 9: 902

[8]

Li L, Liu X L, Wang G, Liu Y L, Kang W M, Deng N P, Zhuang X P, Zhou X H. Chem. Eng. J., 2021, 421: 127744

[9]

Lee H C, Kim H J, Chung S H, Lee K H, Lee H C, Lee J S. J. Am. Chem. Soc., 2003, 125: 2882

[10]

Randall W, Hicks T J P. Chem. Mater., 2003, 15: 78

[11]

Cai W, Yu J, Gu S, Jaroniec M. Cryst. Growth Des., 2010, 10: 3977

[12]

Xue Y, Lin J, Fan Y, Li J, Elsanousi A, Xu X, Liu D, Huang Y, Hu L, Liu Y, Meng F, Zou J, Tang C. J. Cryst. Growth, 2013, 382: 52

[13]

Zhang W, Li B, Sun Y G, Cao A M, Wan L J. J. Am. Chem. Soc., 2020, 142: 17897

[14]

Han D, Lee D. Nanomaterials, 2021, 11: 330

[15]

Wang J, Ge L, Li Z, Li L, Guo Q, Li J. Ceram. Int., 2016, 42: 8545

[16]

Dong Y, Yang H, Zhang L, Li X, Ding D, Wang X, Li J, Li J, Chen I W. Adv. Funct. Mater., 2020, 31: 20007750

[17]

Wang J, Zhao D, Zhou G, Zhang C, Zhang P, Hou X. Mater. Let., 2020, 279: 128476

[18]

Khan Z U, Akhtar K. J. Dispersion Sci. Technolo., 2023 1

[19]

Ma Y, Wei Q, Ling R, An F, Mu G, Huang Y. Micropor. Mesopor. Mat., 2013, 165: 177

[20]

Zhou C, Segal-Peretz T, Oruc M E, Suh H S, Wu G, Nealey P F. Adv. Funct. Mater., 2017, 27: 1701756

[21]

Diao Y A, Wang H Y, Chen B B, Zhang X, Shi C. Appl. Catal. B: Environ., 2023, 330: 122573

[22]

Gholizadeh Z, Aliannezhadi M, Ghominejad M, Tehrani F S. Sci. Rep., 2023, 13: 6131

[23]

Liu Q, Wang A Q, Wang X D, Zhang T. Chem. Mater., 2006, 18: 5153

[24]

Li W C, Lu A H, Schmidt W, Schuth F. Chemistry, 2005, 11: 1658

[25]

Yang P D, Zhao D Y, Margolese D I, Chmelka B F, Stucky G D. Chem. Mater., 1999, 11: 2813

[26]

Dacquin J P, Dhainaut J, Duprez D, Se’bastien Royer S, Lee A F, Wilson K. J. Am. Chem. Soc., 2009, 131: 12896

[27]

Kim Y, Kim C, Yi J. Mater. Res. Bull., 2004, 39: 2103

[28]

Wang T, Fand Y, Wang X, Chou L, Linc H. Fuel, 2015, 157: 171

[29]

Yang L, Guo M, Zhang F, Jing Y, Wang Y, Luo G. Particuology, 2018, 41: 1

[30]

An A, Lu A, Sun Q, Wang J, Li W. Gold Bull., 2011, 44: 217

[31]

Ali A A, Hasan M A, Zaki M I. Chem. Mater., 2005, 17: 6797

[32]

Zhang X-Y, Zhang L, Zhou T-Y, Sun B-H, Wei S, Cao Y-F, Liu M-Y, Sang P-F, Wei C, Chen W, Chen H. Rare Metals, 2022, 41: 3684

[33]

Li Y, Yang X-Y, Tian G, Vantomme A, Yu J, van Tendeloo G, Su B-L. Chem. Mater., 2010, 22: 3251

[34]

Bhowmik K, Chakravarty A, Bysakh S, De G. Energy Technology, 2016, 4: 1409

[35]

Chandradass J, Bae D S, Kim K H. Mater. Manuf. Processes, 2010, 25: 919

[36]

Tang Z, Liang J, Li X, Li J, Guo H, Liu Y, Liu C. J. Solid State Chem., 2013, 202: 305

[37]

Huang Y, White A, Walpole A, Trimm D L. Appl. Catal., 1989, 56: 177

[38]

Bai P, Wu P, Yan Z, Zhao X S. Micropor. Mesopor. Mat., 2009, 118: 288

[39]

Ross G J, Turner R C. Soli Sci. Soci. Americ. J., 1971, 35: 389

[40]

Dyer C, Hendra P J. Spectrockim. Acta, 1993, 49A: 691

[41]

He T, Xiang L, Zhu S. CrystEngComm, 2009, 11: 1338

[42]

He T, Xiang L, Zhu S. Langmuir, 2008, 24: 8284

[43]

Pu X X, Vazquez O, Monnell J D, Neufeld R D. Environ. Eng. Sci., 2010, 27: 169

[44]

Lin J, Yang Z, Zhao X, Ji H, Peng C, Sui B, Chen W, Zhang J, Qian G, Zhou X, Duan X. Chem. Eng. Sci., 2021, 244: 116817

[45]

Kimoto K, Matsui Y, Nabatame T, Yasuda T, Mizoguchi T, Tanaka I, Toriumi A. Appl. Phys. Lett., 2003, 83: 4306

[46]

House J E. J. Thermochim. Acta, 1980, 1980: 40, 225

[47]

Huang W, Liu G, Q T, Li X, Zhou Q, Peng Z. CrystEngComm, 2020, 22: 6983

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/