Formadinium Cation Doping Stabilized Ultra-deep-blue Lead Halide Perovskite Nanocrystal Light-emitting Diodes

Pui Kei Ko, Jonathan E. Halpert

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (3) : 556-560.

Chemical Research in Chinese Universities All Journals
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (3) : 556-560. DOI: 10.1007/s40242-024-4065-x
Article

Formadinium Cation Doping Stabilized Ultra-deep-blue Lead Halide Perovskite Nanocrystal Light-emitting Diodes

Author information +
History +

Abstract

The halide migration effect in mixed-halide lead-based perovskite is a serious problem hindering the development of its display technology. In this study, we have successfully addressed this issue by reporting formadinium (FA) doped mixed-halide perovskite nanocrystals (NCs) with ultra-deep-blue emission of 450 nm, narrow bandwidth of 16 nm, and a high photoluminescence quantum yield (PLQY) of 66%. The perovskite nanocrystal light-emitting diodes (NC-LEDs) using this nanocrystal as an active layer achieved a maximum external quantum efficiency (EQE) of 0.32%, 30-fold improved compared to that of pristine and stable electroluminescence (EL) spectra at 450 nm under a 4.9–8.0 V bias. These findings demonstrate the potential of our approach in developing stable and efficient deep blue perovskite NC-LEDs.

Keywords

Halide perovskite / Light-emitting diodes / Deep-blue

Cite this article

Download citation ▾
Pui Kei Ko, Jonathan E. Halpert. Formadinium Cation Doping Stabilized Ultra-deep-blue Lead Halide Perovskite Nanocrystal Light-emitting Diodes. Chemical Research in Chinese Universities, 2024, 40(3): 556‒560 https://doi.org/10.1007/s40242-024-4065-x
This is a preview of subscription content, contact us for subscripton.

References

[1]
Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, Kovalenko M V. Nano Lett., 2015, 15: 5635.
CrossRef Google scholar
[2]
Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V. Nano Lett., 2015, 15: 3692.
CrossRef Google scholar
[3]
Sun S, Yuan D, Xu Y, Wang A, Deng Z. ACS Nano, 201, 10: 3648.
CrossRef Google scholar
[4]
Han G, Hadi H D, Bruno A, Kulkarni S A, Koh T M, Wong L H, Soci C, Mathews N, Zhang S, Mhaisalkar S G. J. Phys. Chem. C, 2018, 122: 13884.
CrossRef Google scholar
[5]
Chen D, Ko P K, Li C H A, Zou B, Geng P, Guo L, Halpert J E. ACS Energy Lett., 2023, 8: 410.
CrossRef Google scholar
[6]
Chiba T, Hayashi Y, Ebe H, Hoshi K, Sato J, Sato S, Pu Y-J, Ohisa S, Kido J. Nature Photonics, 2018, 12: 681.
CrossRef Google scholar
[7]
Fang T, Wang T, Li X, Dong Y, Bai S, Song J. Science Bulletin, 2021, 66: 36.
CrossRef Google scholar
[8]
Kim Y-H, Kim S, Kakekhani A, Park J, Park J, Lee Y-H, Xu H, Nagane S, Wexler R B, Kim D-H, Jo S H, Martínez-Sarti L, Tan P, Sadhanala A, Park G-S, Kim Y-W, Hu B, Bolink H J, Yoo S, Friend R H, Rappe A M, Lee T-W. Nature Photonics, 2021, 15: 148.
CrossRef Google scholar
[9]
Liu Z, Qiu W, Peng X, Sun G, Liu X, Liu D, Li Z, He F, Shen C, Gu Q, Ma F, Yip H-L, Hou L, Qi Z, Su S-J. Advan. Mater., 2021, 33: 2103268.
CrossRef Google scholar
[10]
Xie M, Guo J, Zhang X, Bi C, Zhang L, Chu Z, Zheng W, You J, Tian J. Nano Lett., 2022, 22: 8266.
CrossRef Google scholar
[11]
Yuan S, Dai L, Sun Y, Auras F, Zhou Y-H, An R-Z, Liu Y, Ding C, Cassidy C, Tang X, Dong S-C, Kang H-B, Chen K, Liu X, Ye Z-F, Zhao Y, Adachi C, Liao L-S, Greenham N C, Qi Y, Stranks S D, Cui L-S, Friend R H. Nat. Photoni., 2024, 18: 425.
CrossRef Google scholar
[12]
Nong Y., Yao J., Li J., Xu L., Yang Z., Li C., Song J., Adv. Mater., 2024, n/a, 2402325.
[13]
Luo C, Yan C, Li W, Chun F, Xie M, Zhu Z, Gao Y, Guo B, Yang W. Adv. Funct. Mater., 2020, 30: 2000026.
CrossRef Google scholar
[14]
Yang F, Chen H, Zhang R, Liu X, Zhang W, Zhang J, Gao F, Wang L. Adv. Func., Mater., 2020, 30: 1908760.
CrossRef Google scholar
[15]
Gao L, Cheng T, Wang Q, Gou L, Zhang Y, Zhang X, Tan C-H, Zheng W, McLachlan M A, Zhang J. ACS Applied Materials & Interfaces, 2021, 13: 55380.
CrossRef Google scholar
[16]
Ding P., Ko P. K., Geng P., Chen D., Xing Z., Tsang, H. L. T., Wong K. S., Guo L., Halpert J. E., Adv. Optic. Mater, 2024, n/a, 2302477.
[17]
Yang D, Zhao B, Yang T, Lai R, Lan D, Friend R H, Di D. Adv. Funct. Mater., 2022, 32: 2109495.
CrossRef Google scholar
[18]
Zou X, Dong Y, Ke J, Ge H, Chen D, Sun H, Cui Y. Chem. Engin. J., 2020, 400: 125919.
CrossRef Google scholar
[19]
Vashishtha P, Halpert J E. Chem. Mater., 2017, 29: 5965.
CrossRef Google scholar
[20]
Zhang F, Song J, Cai B, Chen X, Wei C, Fang T, Zeng H. Science Bulletin, 2021, 66: 2189.
CrossRef Google scholar

43

Accesses

0

Citations

Detail

Sections
Recommended

/