Highly Selective CO2 Separation on Na-exchanged DNL-6 Synthesized by Utilization of Spent Industrial Catalyst

Yanling Tang , Quanyi Wang , NaNa Yan , Xiaosi Zhang , Miao Yang , Peng Tian , Zhongmin Liu

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (6) : 1171 -1178.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (6) : 1171 -1178. DOI: 10.1007/s40242-024-4056-y
Article

Highly Selective CO2 Separation on Na-exchanged DNL-6 Synthesized by Utilization of Spent Industrial Catalyst

Author information +
History +
PDF

Abstract

Conversion of industrial solid wastes into functional materials has attracted considerable interest, as it can reduce environmental pollution and facilitate the sustainable development of relevant processes. Herein, spent methanol-to-olefins (MTO) industrial catalyst was explored for the synthesis of DNL-6 molecular sieve, a promising SAPO-type adsorbent for CO2 capture. It was demonstrated that DNL-6 with high purity and crystallinity, and various silica contents can be readily synthesized. Na-exchanged DNL-6 was further prepared using the as-synthesized DNL-6 as the precursor, and its structure was investigated by Rietveld refinement, revealing that Na cations were mainly located in the single 8-rings (S8Rs). Na-DNL-6 with varied silica contents and Na contents were investigated for adsorption studies. Na-DNL-6 with a high Na exchange degree exhibited comparable CO2 uptake with H-DNL-6 (298 K and 101 kPa), but superior separation selectivity for CO2/CH4 (as high as 1369, 50/50 kPa) and CO2/N2 (∞, 15/85 kPa) owing to the “trapdoor” effect associated with the Na cations sited in the S8Rs. This work provides an eco-friendly approach for the synthesis of efficient silicoaluminophosphate adsorbent for CO2 capture.

Keywords

DNL-6 / SAPO molecular sieve / Synthesis / CO2 separation / Spent industrial catalyst

Cite this article

Download citation ▾
Yanling Tang, Quanyi Wang, NaNa Yan, Xiaosi Zhang, Miao Yang, Peng Tian, Zhongmin Liu. Highly Selective CO2 Separation on Na-exchanged DNL-6 Synthesized by Utilization of Spent Industrial Catalyst. Chemical Research in Chinese Universities, 2024, 40(6): 1171-1178 DOI:10.1007/s40242-024-4056-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gilfillan D, Marland G. Earth Syst. Sci. Data, 2020, 2020: 1

[2]

Liu R S, Xu S, Hao G P, Lu A H. Chem. Res. Chinese Universities, 2022, 38: 18

[3]

Zhang P, Zhang C, Wang L, Dong J, Gai D, Wang W, Nguyen T S, Yavuz C T, Zou X, Zhu G. Adv. Funct. Mater., 2023, 33: 2210091

[4]

Sahoo R, Mondal S, Mukherjee D, Das M C. Adv. Funct. Mater., 2022, 32: 2207197

[5]

Wang X, Yan N, Xie M, Liu P, Bai P, Su H, Wang B, Wang Y, Li L, Cheng T. Chem. Sci., 2021, 12: 8803

[6]

Agrawal M, Sholl D S. ACS Appl. Mater. Interfaces, 2019, 11: 31060

[7]

Zhou Y, Zhang J, Wang L, Cui X, Liu X, Wong S S, An H, Yan N, Xie J, Yu C. Science, 2021, 373: 315

[8]

Liang J, Nuhnen A, Millan S, Breitzke H, Gvilava V, Buntkowsky G, Janiak C. Angew. Chem. Int. Ed., 2020, 59: 6068

[9]

Altundal O F, Altintas C, Keskin S. J. Mater. Chem., 2020, 8: 14609

[10]

Liu Y, Wang S, Meng X, Ye Y, Song X, Liang Z, Zhao Y. Angew. Chem. Int. Ed., 2020, 59: 19487

[11]

Shang J, Li G, Singh R, Gu Q, Nairn K M, Bastow T J, Medhekar N, Doherty C M, Hill A J, Liu J Z. J. Am. Chem. Soc., 2012, 134: 19246

[12]

Duan F, Liu X, Qu D, Li B, Wu L. CCS Chemistry, 2021, 3: 2676

[13]

Zhang X, Wang Z, Chen Z, Zhu Y, Liu Z, Li F, Zhou W, Dong Z, Fan J, Liu L. Appl. Catal. B: Environ., 2022, 317: 121771

[14]

Choi H J, Jo D, Min J G, Hong S B. Angew. Chem. Int. Ed., 2021, 60: 4307

[15]

Zhao J, Mousavi S H, Xiao G, Mokarizadeh A H, Moore T, Chen K, Gu Q, Singh R, Zavabeti A, Liu J Z. J. Am. Chem. Soc., 2021, 143: 15195

[16]

Balestra S R, Hamad S, Ruiz-Salvador A R, Domínguez-García V, Merkling P J, Dubbeldam D, Calero S. Chem. Mat., 2015, 27: 5657

[17]

Georgieva V M, Bruce E L, Verbraeken M C, Scott A R, Casteel W J Jr, Brandani S, Wright P A. J. Am. Chem. Soc., 2019, 141: 12744

[18]

Su X, Tian P, Li J, Zhang Y, Meng S, He Y, Fan D, Liu Z. Microporous Mesoporous Mat., 2011, 144: 113

[19]

Yang M, Tian P, Liu L, Wang C, Xu S, He Y, Liu Z. CrystEngComm., 2015, 17: 8555

[20]

Liu Z, Wang Q, Liu S, Yang M, Fan D, Zhu D, Tian P. Mater. Today Sustain., 2023, 21: 100302

[21]

Huang Y, Machado D, Kirby C W. J. Phys. Chem. B, 2004, 108: 1855

[22]

Blackwell C, Patton R. J. Phys. Chem., 1988, 92: 3965

[23]

Tan J, Liu Z, Bao X, Liu X, Han X, He C, Zhai R. Microporous Mesoporous Mat., 2002, 53: 97

[24]

Rodríguez-González L, Hermes F, Bertmer M, Rodríguez-Castellón E, Jiménez-López A, Simon U. Appl. Catal. A: Gen., 2007, 328: 174

[25]

Xiang X, Yang M, Gao B, Qiao Y, Tian P, Xu S, Liu Z. RSC Adv., 2016, 6: 12544

[26]

Lozinska M M, Mangano E, Mowat J P, Shepherd A M, Howe R F, Thompson S P, Parker J E, Brandani S, Wright P A. J. Am. Chem. Soc., 2012, 134: 17628

[27]

Lozinska M M, Mowat J P, Wright P A, Thompson S P, Jorda J L, Palomino M, Valencia S, Rey F. Chem. Mat., 2014, 26: 2052

[28]

Harlick P J, Tezel F H. Microporous Mesoporous Mat., 2004, 76: 71

[29]

Deroche I, Gaberova L, Maurin G, Castro M, Wright P, Llewellyn P. J. Phys. Chem., 2008, 112: 5048

[30]

Li Y, Chen H, Wang C, Ye Y, Li L, Song X, Yu J. Chem. Sci., 2022, 13: 5687

[31]

Wang D, Tian P, Yang M, Xu S, Fan D, Su X, Yang Y, Wang C, Liu Z. Microporous Mesoporous Mat., 2014, 194: 8

[32]

Reisner B A, Lee Y, Hanson J C, Jones G A, Parise J B, Corbin D R, Toby B H, Freitag A, Larese J Z, Kahlenberg V. Chem. Commun., 2000, 22: 2221

[33]

Ke Q, Sun T, Wei X, Guo Y, Xu S, Wang S. Chem. Eng. J., 2019, 359: 344

[34]

Bower J K, Barpaga D, Prodinger S, Krishna R, Schaef H T, McGrail B P, Derewinski M A, Motkuri R K. ACS Appl. Mater, 2018, 10: 14287

[35]

Wang S, Bai P, Sun M, Liu W, Li D, Wu W, Yan W, Shang J, Yu J. Adv. Sci., 2019, 6: 1901317

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/