Improving the Stability and Efficiency of Perovskite Solar Cells by Controlling the Crystallization Active Layer with Binary Anti-solvent

Diandian Chen , Hari Bala , Bowen Zhang , Zhiyong Zhao , Yunpeng Zhao , Fei Cheng , Yingjie Wen

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (6) : 1160 -1170.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (6) : 1160 -1170. DOI: 10.1007/s40242-024-4049-x
Article

Improving the Stability and Efficiency of Perovskite Solar Cells by Controlling the Crystallization Active Layer with Binary Anti-solvent

Author information +
History +
PDF

Abstract

In this study, a hybrid anti-solvent treatment was used to prepare high-quality MA0.9FA0.1PbI3 perovskite film, and perovskite solar cells (PSCs) with carbon counter electrodes of high stability and high efficiency were fabricated. Different ratios of chlorobenzene (CB) and toluene (TL) were utilized as binary anti-solvent, and dropwise addition was initiated within spin-coating perovskite film. By optimizing the ratio of CB and TL, the formation process of perovskite film was effectively controlled and the crystallinity and coverage of the perovskite film were improved. The carbon electrode PSCs composed of MA0.9FA0.1PbI3 film treated with anti-solvent exhibited a maximum power conversion efficiency (PCE) of 12.21% under air atmosphere conditions, which was higher than that of the PSCs of MA0.9FA0.1PbI3 film without anti-solvent treatment. Finally, PSCs showed that the device still exhibits 90% of the initial efficiency after being stored in the air for 100 d, which shows excellent stability.

Keywords

Perovskite solar cell / MA0.9FA0.1PbI3 / Anti-solvent treatment / Stability / Carbon electrode

Cite this article

Download citation ▾
Diandian Chen, Hari Bala, Bowen Zhang, Zhiyong Zhao, Yunpeng Zhao, Fei Cheng, Yingjie Wen. Improving the Stability and Efficiency of Perovskite Solar Cells by Controlling the Crystallization Active Layer with Binary Anti-solvent. Chemical Research in Chinese Universities, 2024, 40(6): 1160-1170 DOI:10.1007/s40242-024-4049-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Huang J, Yuan Y, Shao Y, Yan Y. Nat. Rev. Mater., 2017, 2: 17042

[2]

Wang S, Li H, Zhang B, Guo Z, Bala H, Yao S, Zhang J, Chen C, Fu W, Cao J, Sun G, Zhang Z. Org. Electron., 2020, 83: 105734

[3]

Im J, Lee C, Lee J, Park S, Park N. Nanoscale, 2011, 34: 4088

[4]

Jeon N J, Na H, Jung E H, Yang T, Lee Y G, Kim G, Shin H, Il Seok S, Lee J, Seo J. Nat. Energy, 2018, 3: 682

[5]

Kim M, Jeong J, Lu H, Lee T K, Eickemeyer F T, Liu Y, Choi I W, Choi S J, Jo Y, Kim H, Mo S, Kim Y, Lee H, An N G, Cho S, Tress W R, Zakeeruddin S M, Hagfeldt A, Kim J Y, Grätzel M, Kim D S. Science, 2022, 375: 302

[6]

Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I. Science, 2015, 348: 1234

[7]

Yang W S, Park B, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I. Science, 2017, 356: 1376

[8]

Kojima A, Teshima K, Shirai Y, Miyasaka T. J. Am. Chem. Soc., 2009, 131: 6050

[9]

Si C, Lv X, Long S. Inorg. Chem. Commun., 2020, 112: 107701

[10]

Jeong J, Kim M, Seo J, Lu H, Ahlawat P, Mishra A, Yang Y, Hope M A, Eickemeyer F T, Kim M, Yoon Y J, Choi I W, Darwich B P, Choi S J, Jo Y, Lee J H, Walker B, Zakeeruddin S M, Emsley L, Rothlisberger U, Hagfeldt A, Kim D S, Grätzel M, Kim J Y. Nature, 2021, 592: 381

[11]

Xiang Y, Zhuang J, Ma Z, Lu H, Xia H, Zhou W, Zhang T, Li H. Chem. Res. Chinese Universities, 2019, 35: 101

[12]

Feng J, Wang X, Li J, Liang H, Wen W, Alvianto E, Qiu C, Su R, Hou Y. Nat. Commun., 2023, 14: 5392

[13]

Wang S, Li H, Zhang B, Guo Z, Bala H, Yao S, Zhang J, Chen C, Fu W, Cao J, Sun G, Zhang Z. Org. Electron., 2020, 83: 105734

[14]

Zong B, Fu W, Liu H, Huang L, Bala H, Wang X, Sun G, Cao J, Zhang Z. J. Alloy. Compd., 2018, 748: 1006

[15]

Chu L, Liu W, Qin Z, Zhang R, Hu R, Yang J, Yang J, Li X. Sol. Energy Mater. Sol. Cells, 2018, 178: 164

[16]

Liu X, Yu Z, Wang T, Chiu K L, Lin F, Gong H, Ding L, Cheng Y. Adv. Energy Mater., 2020, 10: 2001858

[17]

Wang H, Sun J, Gu Y, Xu C, Lu Y, Hu J, Chen T, Zhu C, Luo P. Sol. Energy Mater. Sol. Cells, 2022, 238: 111640

[18]

Xiao M, Huang F, Huang W, Dkhissi Y, Zhu Y, Etheridge J, Gray-Weale A, Bach U, Cheng Y, Spiccia L. Angewandte Chemie, 2014, 53: 9898

[19]

Wang Y, Wu J, Zhang P, Liu D, Zhang T, Ji L, Gu X, Chen Z D, Li S. Nano Energy, 2017, 39: 616

[20]

Liu Z, Wang L, Xie X. J. Mater. Chem. C., 2020, 8: 11664

[21]

Jin S, Wei Y, Huang F, Yang X, Luo D, Fang Y, Zhao Y, Guo Q, Huang Y, Wu J. J. Power Sources, 2018, 404: 64

[22]

Liu H, Zhou H. Chem. Res. Chinese Universities, 2021, 37: 1055

[23]

Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I. Nat. Mater., 2014, 13: 897

[24]

Ji L, Zhang T, Wang Y, Zhang P, Liu D, Chen Z, Li S. Nanoscale Res. Lett., 2017, 12: 1

[25]

Lee K, Lin C, Liou B, Yu S, Hsu C, Suryanarayanan V, Wu M. Sol. Energy Mater. Sol. Cells, 2017, 172: 368

[26]

Wang Y, Wu J, Zhang P, Liu D, Zhang T, Ji L, Gu X, Chen Z D, Li S. Nano Energy, 2017, 39: 616

[27]

Prochowicz D, Tavakoli M M, Solanki A, Goh T W, Pandey K, Sum T C, Saliba M, Yadav P. J. Mater. Chem. A, 2018, 6: 14307

[28]

Liu J, Li N, Jia J, Dong J, Qiu Z, Iqbal S, Cao B. Sol. Energy, 2019, 181: 285

[29]

Dong C, Han X, Li W, Qiu Q, Wang J. Nano Energy, 2019, 59: 553

[30]

Arias-Ramos C F, Kumar Y, Abrego-Martínez P G, Hu H. Sol. Energy Mater. Sol. Cells, 2020, 215: 110625

[31]

Troughton J, Hooper K, Watson T M. Nano Energy, 2017, 39: 60

[32]

Zhou Y, Yang M, Wu W, Vasiliev A L, Zhu K, Padture N P. J. Mater. Chem. A, 2015, 3: 8178

[33]

Paek S, Schouwink P, Athanasopoulou E N, Cho K T, Grancini G, Lee Y, Zhang Y, Stellacci F, Nazeeruddin M K, Gao P. Chem. Mat., 2017, 29: 3490

[34]

Baltakesmez A, Güzeldir B, Alkan Y, Sağlam M, Biber M. Opt. Mater., 2020, 110: 110524

[35]

Fang F, Chen J, Wu G, Chen H. Org. Electron., 2018, 59: 330

[36]

Yu Y, Yang S, Lei L, Cao Q, Shao J, Zhang S, Liu Y. ACS Appl. Mater. Interfaces, 2017, 94: 3667

[37]

Hleli E, Alam S, Saaidia A, Kästner C, Hoeppener S, Ulbricht C, Romdhane S, Fredj A B, Egbe D A M, Schubert U S, Bouchriha H, Hoppe H. Synth. Met., 2018, 243: 8

[38]

Ngo T T, Suarez I, Antonicelli G, Cortizo-Lacalle D, Martinez-Pastor J P, Mateo-Alonso A, Mora-Sero I. Adv. Mater., 2016, 29: 1604056

[39]

Samadpour M, Golchini A, Abdizadeh K, Heydari M, Forouzandeh M, Saki Z, Taghavinia N. ACS Omega, 2020, 6: 172

[40]

Wang Y, Wu J, Zhang P, Liu D, Zhang T, Ji L, Gu X, Chen Z D, Li S. Nano Energy, 2017, 39: 616

[41]

Cao Y, Liu Z, Li W, Zhao Z, Xiao Z, Lei B, Zi W, Cheng N, Liu J, Tu Y. Sol. Energy, 2021, 220: 251

[42]

Zhou Y, Yang M, Wu W, Vasiliev A L, Zhu K, Padture N P. J. Mater. Chem. A, 2015, 3: 8178

[43]

Chen C, Hari B, Yao S, Zhang B, Sha N, An X, Zhang W, Chen D. J. Alloy. Compd., 2022, 920: 165874

[44]

Guerrero A, Garcia-Belmonte G, Mora-Sero I, Bisquert J, Kang Y S, Jacobsson T J, Correa-Baena J, Hagfeldt A. The Journal of Physical Chemistry C, 2016, 120: 8023

[45]

Shi J, Dong J, Lv S, Xu Y, Zhu L, Xiao J, Xu X, Wu H, Li D, Luo Y, Meng Q. Appl. Phys. Lett., 2014, 104: 063901

[46]

Sha N, Hari B, Chen C, Zhang B, Zhang W, An X, Chen D, Zhao Z. Electrochim. Acta, 2023, 920: 165874

[47]

Gonzalez-Pedro V, Juarez-Perez E J, Arsyad W, Barea E M, Fabregat-Santiago F, Mora-Sero I, Bisquert J. Nano Lett., 2014, 14: 888

[48]

Conings B, Baeten L, De Dobbelaere C, D’Haen J, Manca J, Boyen H. Adv. Mater., 2013, 26: 2041

[49]

Wang S, Liu H, Bala H, Zong B, Huang L, Guo Z, Fu W, Zhang B, Sun G, Cao J, Zhang Z. Electrochim. Acta, 2020, 335: 135686

AI Summary AI Mindmap
PDF

164

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/