Regulating Oxygen Vacancy Defects in Heterogeneous NiO-CeO2−δ Hollow Multi-shelled Structure for Boosting Oxygen Evolution Reaction

Huan Wang, Guannan Gong, Guohua Sun, Jian Qi, Ranbo Yu, Dan Wang

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (3) : 475-483. DOI: 10.1007/s40242-024-4048-y
Article

Regulating Oxygen Vacancy Defects in Heterogeneous NiO-CeO2−δ Hollow Multi-shelled Structure for Boosting Oxygen Evolution Reaction

Author information +
History +

Abstract

CeO2 with excellent oxygen storage-exchange capacity and NiO with excellent surface activity were used to construct a heterogeneous NiO-CeO2−δ hollow multi-shelled structure (HoMS) by spray drying. It turned out that as the proportion of CeO2 increases, the overpotential and Tafel slope of NiO-CeO2−δ HoMSs first decreased and then increased. This is mainly because the construction of the NiO-CeO2−δ HoMSs not only increases the specific surface area, but also introduces oxygen vacancy defects, thus improving the interface charge transfer capability of the materials and further improving the oxygen evolution reaction (OER) performance. However, the increase of the calcination temperature will induce the decay of the OER performance of NiO-CeO2−δ HoMSs, which is mainly due to the decrease of the specific surface area, the reduction of oxygen vacancy defects, and the weakening of interface charge transfer capability. Furthermore, a series of heterogeneous composite HoMSs, such as Ni/Co, Mo/Ni, Al/Ni and Fe/Ni oxides was successfully constructed by spray drying, which enriched the diversity of HoMSs.

Keywords

Heterogeneous composite structure / Hollow multi-shelled structure / Oxygen vacancy defect / Oxygen evolution reaction

Cite this article

Download citation ▾
Huan Wang, Guannan Gong, Guohua Sun, Jian Qi, Ranbo Yu, Dan Wang. Regulating Oxygen Vacancy Defects in Heterogeneous NiO-CeO2−δ Hollow Multi-shelled Structure for Boosting Oxygen Evolution Reaction. Chemical Research in Chinese Universities, 2024, 40(3): 475‒483 https://doi.org/10.1007/s40242-024-4048-y

References

[1]
Wang Y, Yan D, Hankari S E, Zou Y, Wang S. . Adv. Sci., 2018, 5: 1800064,
CrossRef Google scholar
[2]
Li Q, Sun F, Zhang D, Sun H, Wang Q, Qi J, Wang H, Li Z, Hu Z, Wang B. . Chem. Eng. J., 2023, 452: 139232,
CrossRef Google scholar
[3]
Bockris J O M, Veziroglu T N. . Int. J. Hydrogen Energ., 2007, 32: 1605,
CrossRef Google scholar
[4]
Dionigi F, Strasser P. . Adv. Energy Mater., 2016, 6: 1600621,
CrossRef Google scholar
[5]
Gu H, Shi G, Chen H C, Xie S, Li Y, Tong H, Yang C, Zhu C, Mefford J T, Xia H, Chueh W C, Chen H M, Zhang L. . ACS Energy Letters, 2020, 5: 3185,
CrossRef Google scholar
[6]
Sun Z, Liu L, Nan C, Li H, Sun G, Yang X. . ACS Sustainable Chem. Eng., 2018, 6: 14257,
CrossRef Google scholar
[7]
Cai Z, Bu X, Wang P, Ho J C, Yang J, Wang X. . J. Mater. Chem. A, 2019, 7: 5069,
CrossRef Google scholar
[8]
Zhang X, Zhao Y, Zhao Y, Shi R, Waterhouse G I, Zhang T. . Adv. Energy Mater., 2019, 9: 1900881,
CrossRef Google scholar
[9]
Liu R, Wang Y, Liu D, Zou Y, Wang S. . Adv. Mater., 2017, 29: 1701546,
CrossRef Google scholar
[10]
Walch S P, Goddard I W A. . J. Am. Chem. Soc., 1978, 100: 1338,
CrossRef Google scholar
[11]
Feng J X, Ye S H, Xu H, Tong Y X, Li G R. . Adv. Mater., 2016, 28: 4698,
CrossRef Google scholar
[12]
Liu Y, Ma C, Zhang Q, Wang W, Pan P, Gu L, Xu D, Bao J, Dai Z. . Adv. Mater., 2019, 31: 1900062,
CrossRef Google scholar
[13]
Qi J, Lai X, Wang J, Tang H, Ren H, Yang Y, Jin Q, Zhang L, Yu R, Ma G, Su Z, Zhao H, Wang D. . Chem. Soc. Rev., 2015, 44: 6749,
CrossRef Google scholar
[14]
Ren H, Yu R. . Inorg. Chem. Front., 2019, 6: 2239,
CrossRef Google scholar
[15]
Wang L, Wan J, Wang J, Wang D. . Small Struct., 2021, 2: 2000041,
CrossRef Google scholar
[16]
Fang L, Xie Y, Yang Y, Zhu B, Wang Y, Liu M, Zhao K, Zhao H, Zhang J. . ACS Appl. Energ. Mater., 2019, 3: 309,
CrossRef Google scholar
[17]
Yu X, Wu J, Zhang A, Xue L, Wang Q, Tian X, Shan S, Zhong C J, Zeng S. . CrystEngComm, 2019, 21: 3626
[18]
Zhang S, Fan Q, Gao H, Huang Y, Liu X, Li J, Xu X, Wang X. . J. Mater. Chem. A, 2016, 4: 1422
[19]
Qian X, Wu W, Niu Y, Yang J, Xu C, Wong K Y. . ACS Appl. Mater. Interfaces, 2019, 11: 43286
[20]
Shan Z W, Adesso G, Cabot A, Sherburne M P, Syed Asif S A, Warren O L, Chrzan D C, Minor A M. . Alivisatos A. P., Nat. Mater., 2008, 7: 947,
CrossRef Google scholar
[21]
Qin F, Cui P, Hu L, Wang Z, Chen J, Xing X, Wang H, Yu R. . Mater. Res. Bull., 2018, 99: 331,
CrossRef Google scholar
[22]
Liao Y, Li Y, Wang L, Zhao Y, Ma D, Wang B, Wan Y, Zhong S. . Dalton T., 2017, 46: 1634,
CrossRef Google scholar
[23]
Zhang D, Zhang G, Zhang L. . Chem. Eng. J., 2017, 330: 792,
CrossRef Google scholar
[24]
Wang H, Qi J, Yang N, Cui W, Wang J, Li Q, Zhang Q, Yu X, Gu L, Li J, Yu R, Huang K, Song S, Feng S, Wang D. . Angew. Chem. Int. Ed., 2020, 59: 19691,
CrossRef Google scholar
[25]
Wang H, Mao D, Qi J, Zhang Q, Ma X, Song S, Gu L, Yu R, Wang D. . Adv. Funct. Mater., 2019, 29: 1806588,
CrossRef Google scholar
[26]
Wei Y, Yang N, Huang K, Wan J, You F, Yu R, Feng S, Wang D. . Adv. Mater., 2020, 32: 2002556,
CrossRef Google scholar
[27]
Wang J, Yang N, Tang H, Dong Z, Jin Q, Yang M, Kisailus D, Zhao H, Tang Z, Wang D. . Angew. Chem. Int. Ed., 2013, 52: 6417,
CrossRef Google scholar
[28]
Xu J, Yao X, Wei W, Wang Z, Yu R. . Mater. Res. Bull., 2017, 87: 214,
CrossRef Google scholar
[29]
Zhao D, Yang N, Wei Y, Jin Q, Wang Y, He H, Yang Y, Han B, Zhang S, Wang D. . Nat. Commun., 2020, 11: 4450,
CrossRef Google scholar
[30]
Li Y, Zhou W, Wang H, Xie L, Liang Y, Wei F, Idrobo J C, Pennycook S J, Dai H. . Nat. Nanotechnol., 2012, 7: 394,
CrossRef Google scholar
[31]
Bodhankar P M, Sarawade P B, Singh G, Vinu A, Dhawale D S. . J. Mater. Chem. A, 2021, 9: 3180,
CrossRef Google scholar
[32]
Tomboc G M, Kim J, Wang Y, Son Y, Li J, Kim J Y, Lee K. . J. Mater. Chem. A, 2021, 9: 4528,
CrossRef Google scholar
[33]
Cai Z, Ji B, Yan K, Zhu Q. . Polymers, 2019, 11: 2071,
CrossRef Google scholar
[34]
Bichara L C, Lanús H E, Brandán S A. . J. Mol. Liq., 2014, 200: 448,
CrossRef Google scholar
[35]
Solsona B, Concepción P, Hernández S, Demicol B, Nieto J M L. . Catal. Today, 2012, 180: 51,
CrossRef Google scholar
[36]
Min P, Zhang S, Xu Y, Li R. . Appl. Surf. Sci., 2018, 448: 435,
CrossRef Google scholar
[37]
Shi Y, Fu J, Hui K, Liu J, Gao C, Chang S, Chen Y, Gao X, Gao T, Xu L, Wei Q, Tang M. . Microstructures, 2021, 1: 2021005
[38]
Zhong Y., Ping D., Song X., Yin F., J. Alloy. Comp., 476, 113.
[39]
Manibalan G, Murugadoss G, Thangamuthu R, Ragupathy P, Kumar M R, Kumar R M, Jayavel R. . Inorg. Chem, 2019, 58: 13843,
CrossRef Google scholar
[40]
Yan Y, Ran Z, Zeng T, Wen X, Xu H, Li R, Zhao C, Shu C. . Small, 2022, 18: 2106707,
CrossRef Google scholar
[41]
Vandevyvere T, Sabbea M, Mendes P, Thybaut J, Lauwaert J. . Green Carbon, 2023, 1: 170,
CrossRef Google scholar
[42]
Wu C, Zhang Y, Xiao W. . Chin. J. Rare Met., 2023, 47: 1747
[43]
You N, Cao S, Huang M, Fan X, Shi K, Huang H, Chen Z, Yang Z, Zhang W. . Nano Mater. Sci., 2023, 5: 278,
CrossRef Google scholar
[44]
Xu X, Zhang Y, Miao X. . Chin. J. Rare Met., 2022, 46: 1449
[45]
Mu Y, Pei X, Zhao Y, Dong X, Kou Z, Cui M, Meng C, Zhang Y. . Nano Mater. Sci., 2023, 5: 351,
CrossRef Google scholar
[46]
Wang H, Zhang Q, Sun F, Qi J, Zhang D, Sun H, Li Z, Wang Q, Wang B. . J. Alloy. Comp., 2023, 933: 167700,
CrossRef Google scholar
[47]
Liang F, Wang X, Hu B, Cheng M, Mao J, Zhou W. . Chin. J. Rare Met., 2023, 47: 124
[48]
Kong J, Zheng J, Wu H, Wan C, Ye M, Xu L. . Chin. J. Rare Met., 2023, 47: 797
[49]
Zhang B, Zhang S, Deng L, Li L, Zhang S. . Chin. J. Rare Met., 2022, 46: 1439
[50]
Zhang X, You R, Li D, Cao T, Huang W. . ACS Appl. Mater. Interfaces, 2017, 9: 35897,
CrossRef Google scholar
[51]
Li L, Li R, Xu J, Liu Y, Lu L. . Chin. J. Rare Met., 2023, 47: 1726
[52]
Gao Y, Song T, Guo X, Zhang Y, Yang Y. . Green Carbon, 2023, 1: 105,
CrossRef Google scholar
[53]
Yan Y, Ma Z, Sun J, Bu M, Huo Y, Wang Z, Li Y, Hu N. . Nano Mater. Sci., 2021, 3: 268,
CrossRef Google scholar
[54]
Wang F, Yang S, Han S, Sun P, Liu W, Lu Q, Cao W. . Prog. Nat. Sci. Mater. Int., 2022, 32: 561,
CrossRef Google scholar
[55]
Wang Z, Wei Y, Qi J, Wan J, Wang Z, Yu R, Wang D. . Adv. Funct. Mater., 2024, 34: 2316547,
CrossRef Google scholar
[56]
Wang Q, Li C, Sun P, Liu F, Lu G, Li X. . Mater. Res. Express, 2019, 6: 1150e6,
CrossRef Google scholar
[57]
Yang W, Zhu G, Wang J, Feng S, Yang J, Su P, Fu W, Yang H. . Catal. Lett., 2019, 149: 1680,
CrossRef Google scholar
[58]
Saikia H, Hazarika K K, Chutia B, Choudhury B, Bharali P. . ChemistrySelect, 2017, 2: 3369,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/