Regulating Oxygen Vacancy Defects in Heterogeneous NiO-CeO2−δ Hollow Multi-shelled Structure for Boosting Oxygen Evolution Reaction

Huan Wang , Guannan Gong , Guohua Sun , Jian Qi , Ranbo Yu , Dan Wang

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (3) : 475 -483.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (3) : 475 -483. DOI: 10.1007/s40242-024-4048-y
Article

Regulating Oxygen Vacancy Defects in Heterogeneous NiO-CeO2−δ Hollow Multi-shelled Structure for Boosting Oxygen Evolution Reaction

Author information +
History +
PDF

Abstract

CeO2 with excellent oxygen storage-exchange capacity and NiO with excellent surface activity were used to construct a heterogeneous NiO-CeO2−δ hollow multi-shelled structure (HoMS) by spray drying. It turned out that as the proportion of CeO2 increases, the overpotential and Tafel slope of NiO-CeO2−δ HoMSs first decreased and then increased. This is mainly because the construction of the NiO-CeO2−δ HoMSs not only increases the specific surface area, but also introduces oxygen vacancy defects, thus improving the interface charge transfer capability of the materials and further improving the oxygen evolution reaction (OER) performance. However, the increase of the calcination temperature will induce the decay of the OER performance of NiO-CeO2−δ HoMSs, which is mainly due to the decrease of the specific surface area, the reduction of oxygen vacancy defects, and the weakening of interface charge transfer capability. Furthermore, a series of heterogeneous composite HoMSs, such as Ni/Co, Mo/Ni, Al/Ni and Fe/Ni oxides was successfully constructed by spray drying, which enriched the diversity of HoMSs.

Keywords

Heterogeneous composite structure / Hollow multi-shelled structure / Oxygen vacancy defect / Oxygen evolution reaction

Cite this article

Download citation ▾
Huan Wang, Guannan Gong, Guohua Sun, Jian Qi, Ranbo Yu, Dan Wang. Regulating Oxygen Vacancy Defects in Heterogeneous NiO-CeO2−δ Hollow Multi-shelled Structure for Boosting Oxygen Evolution Reaction. Chemical Research in Chinese Universities, 2024, 40(3): 475-483 DOI:10.1007/s40242-024-4048-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang Y, Yan D, Hankari S E, Zou Y, Wang S. Adv. Sci., 2018, 5: 1800064.

[2]

Li Q, Sun F, Zhang D, Sun H, Wang Q, Qi J, Wang H, Li Z, Hu Z, Wang B. Chem. Eng. J., 2023, 452: 139232.

[3]

Bockris J O M, Veziroglu T N. Int. J. Hydrogen Energ., 2007, 32: 1605.

[4]

Dionigi F, Strasser P. Adv. Energy Mater., 201, 6: 1600621.

[5]

Gu H, Shi G, Chen H C, Xie S, Li Y, Tong H, Yang C, Zhu C, Mefford J T, Xia H, Chueh W C, Chen H M, Zhang L. ACS Energy Letters, 2020, 5: 3185.

[6]

Sun Z, Liu L, Nan C, Li H, Sun G, Yang X. ACS Sustainable Chem. Eng., 2018, 6: 14257.

[7]

Cai Z, Bu X, Wang P, Ho J C, Yang J, Wang X. J. Mater. Chem. A, 2019, 7: 5069.

[8]

Zhang X, Zhao Y, Zhao Y, Shi R, Waterhouse G I, Zhang T. Adv. Energy Mater., 2019, 9: 1900881.

[9]

Liu R, Wang Y, Liu D, Zou Y, Wang S. Adv. Mater., 2017, 29: 1701546.

[10]

Walch S P, Goddard I W A. J. Am. Chem. Soc., 1978, 100: 1338.

[11]

Feng J X, Ye S H, Xu H, Tong Y X, Li G R. Adv. Mater., 201, 28: 4698.

[12]

Liu Y, Ma C, Zhang Q, Wang W, Pan P, Gu L, Xu D, Bao J, Dai Z. Adv. Mater., 2019, 31: 1900062.

[13]

Qi J, Lai X, Wang J, Tang H, Ren H, Yang Y, Jin Q, Zhang L, Yu R, Ma G, Su Z, Zhao H, Wang D. Chem. Soc. Rev., 2015, 44: 6749.

[14]

Ren H, Yu R. Inorg. Chem. Front., 2019, 6: 2239.

[15]

Wang L, Wan J, Wang J, Wang D. Small Struct., 2021, 2: 2000041.

[16]

Fang L, Xie Y, Yang Y, Zhu B, Wang Y, Liu M, Zhao K, Zhao H, Zhang J. ACS Appl. Energ. Mater., 2019, 3: 309.

[17]

Yu X, Wu J, Zhang A, Xue L, Wang Q, Tian X, Shan S, Zhong C J, Zeng S. CrystEngComm, 2019, 21: 3626.

[18]

Zhang S, Fan Q, Gao H, Huang Y, Liu X, Li J, Xu X, Wang X. J. Mater. Chem. A, 201, 4: 1422.

[19]

Qian X, Wu W, Niu Y, Yang J, Xu C, Wong K Y. ACS Appl. Mater. Interfaces, 2019, 11: 43286.

[20]

Shan Z W, Adesso G, Cabot A, Sherburne M P, Syed Asif S A, Warren O L, Chrzan D C, Minor A M. Alivisatos A. P., Nat. Mater., 2008, 7: 947.

[21]

Qin F, Cui P, Hu L, Wang Z, Chen J, Xing X, Wang H, Yu R. Mater. Res. Bull., 2018, 99: 331.

[22]

Liao Y, Li Y, Wang L, Zhao Y, Ma D, Wang B, Wan Y, Zhong S. Dalton T., 2017, 46: 1634.

[23]

Zhang D, Zhang G, Zhang L. Chem. Eng. J., 2017, 330: 792.

[24]

Wang H, Qi J, Yang N, Cui W, Wang J, Li Q, Zhang Q, Yu X, Gu L, Li J, Yu R, Huang K, Song S, Feng S, Wang D. Angew. Chem. Int. Ed., 2020, 59: 19691.

[25]

Wang H, Mao D, Qi J, Zhang Q, Ma X, Song S, Gu L, Yu R, Wang D. Adv. Funct. Mater., 2019, 29: 1806588.

[26]

Wei Y, Yang N, Huang K, Wan J, You F, Yu R, Feng S, Wang D. Adv. Mater., 2020, 32: 2002556.

[27]

Wang J, Yang N, Tang H, Dong Z, Jin Q, Yang M, Kisailus D, Zhao H, Tang Z, Wang D. Angew. Chem. Int. Ed., 2013, 52: 6417.

[28]

Xu J, Yao X, Wei W, Wang Z, Yu R. Mater. Res. Bull., 2017, 87: 214.

[29]

Zhao D, Yang N, Wei Y, Jin Q, Wang Y, He H, Yang Y, Han B, Zhang S, Wang D. Nat. Commun., 2020, 11: 4450.

[30]

Li Y, Zhou W, Wang H, Xie L, Liang Y, Wei F, Idrobo J C, Pennycook S J, Dai H. Nat. Nanotechnol., 2012, 7: 394.

[31]

Bodhankar P M, Sarawade P B, Singh G, Vinu A, Dhawale D S. J. Mater. Chem. A, 2021, 9: 3180.

[32]

Tomboc G M, Kim J, Wang Y, Son Y, Li J, Kim J Y, Lee K. J. Mater. Chem. A, 2021, 9: 4528.

[33]

Cai Z, Ji B, Yan K, Zhu Q. Polymers, 2019, 11: 2071.

[34]

Bichara L C, Lanús H E, Brandán S A. J. Mol. Liq., 2014, 200: 448.

[35]

Solsona B, Concepción P, Hernández S, Demicol B, Nieto J M L. Catal. Today, 2012, 180: 51.

[36]

Min P, Zhang S, Xu Y, Li R. Appl. Surf. Sci., 2018, 448: 435.

[37]

Shi Y, Fu J, Hui K, Liu J, Gao C, Chang S, Chen Y, Gao X, Gao T, Xu L, Wei Q, Tang M. Microstructures, 2021, 1: 2021005.

[38]

Zhong Y., Ping D., Song X., Yin F., J. Alloy. Comp., 476, 113.

[39]

Manibalan G, Murugadoss G, Thangamuthu R, Ragupathy P, Kumar M R, Kumar R M, Jayavel R. Inorg. Chem, 2019, 58: 13843.

[40]

Yan Y, Ran Z, Zeng T, Wen X, Xu H, Li R, Zhao C, Shu C. Small, 2022, 18: 2106707.

[41]

Vandevyvere T, Sabbea M, Mendes P, Thybaut J, Lauwaert J. Green Carbon, 2023, 1: 170.

[42]

Wu C, Zhang Y, Xiao W. Chin. J. Rare Met., 2023, 47: 1747.

[43]

You N, Cao S, Huang M, Fan X, Shi K, Huang H, Chen Z, Yang Z, Zhang W. Nano Mater. Sci., 2023, 5: 278.

[44]

Xu X, Zhang Y, Miao X. Chin. J. Rare Met., 2022, 46: 1449.

[45]

Mu Y, Pei X, Zhao Y, Dong X, Kou Z, Cui M, Meng C, Zhang Y. Nano Mater. Sci., 2023, 5: 351.

[46]

Wang H, Zhang Q, Sun F, Qi J, Zhang D, Sun H, Li Z, Wang Q, Wang B. J. Alloy. Comp., 2023, 933: 167700.

[47]

Liang F, Wang X, Hu B, Cheng M, Mao J, Zhou W. Chin. J. Rare Met., 2023, 47: 124.

[48]

Kong J, Zheng J, Wu H, Wan C, Ye M, Xu L. Chin. J. Rare Met., 2023, 47: 797.

[49]

Zhang B, Zhang S, Deng L, Li L, Zhang S. Chin. J. Rare Met., 2022, 46: 1439.

[50]

Zhang X, You R, Li D, Cao T, Huang W. ACS Appl. Mater. Interfaces, 2017, 9: 35897.

[51]

Li L, Li R, Xu J, Liu Y, Lu L. Chin. J. Rare Met., 2023, 47: 1726.

[52]

Gao Y, Song T, Guo X, Zhang Y, Yang Y. Green Carbon, 2023, 1: 105.

[53]

Yan Y, Ma Z, Sun J, Bu M, Huo Y, Wang Z, Li Y, Hu N. Nano Mater. Sci., 2021, 3: 268.

[54]

Wang F, Yang S, Han S, Sun P, Liu W, Lu Q, Cao W. Prog. Nat. Sci. Mater. Int., 2022, 32: 561.

[55]

Wang Z, Wei Y, Qi J, Wan J, Wang Z, Yu R, Wang D. Adv. Funct. Mater., 2024, 34: 2316547.

[56]

Wang Q, Li C, Sun P, Liu F, Lu G, Li X. Mater. Res. Express, 2019, 6: 1150e6.

[57]

Yang W, Zhu G, Wang J, Feng S, Yang J, Su P, Fu W, Yang H. Catal. Lett., 2019, 149: 1680.

[58]

Saikia H, Hazarika K K, Chutia B, Choudhury B, Bharali P. ChemistrySelect, 2017, 2: 3369.

AI Summary AI Mindmap
PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/