Hierarchically Macroporous Zeolite ZSM-5 Microspheres for Efficient Catalysis

Mingdan Zheng, Ya Chen, Zhan Liu, Jiamin Lyu, Bo Ye, Ming-Hui Sun, Li-Hua Chen, Bao-Lian Su

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (4) : 704-711. DOI: 10.1007/s40242-024-4041-5
Article

Hierarchically Macroporous Zeolite ZSM-5 Microspheres for Efficient Catalysis

Author information +
History +

Abstract

Hollow zeolite microspheres have recently attracted much attention for their applications in catalysis, microreactors and biomedicine. Herein, we present hierarchically structured zeolite ZSM-5 microspheres with unique, abundant macropores that allow more efficient use for catalysis. The hierarchically macroporous zeolite ZSM-5 microspheres are synthesized under the assistance of water/oil emulsions and using polystyrene nanospheres as templates. The zeolite microsphere is assembled by uniform hollow zeolite nanospheres. Their large inner cavities and thin zeolite shells lead to smaller diffusion channel and higher improved accessibility to active sites, contributing to high catalytic performance in the catalytic conversion of benzyl alcohol in mesitylene. Such novel zeolite microspheres with impressive performance will be applied to numerous other industrial catalytic reactions.

Keywords

Hierarchically porous structure / Hollow structure / Microsphere / Zeolite ZSM-5 / Alkylation

Cite this article

Download citation ▾
Mingdan Zheng, Ya Chen, Zhan Liu, Jiamin Lyu, Bo Ye, Ming-Hui Sun, Li-Hua Chen, Bao-Lian Su. Hierarchically Macroporous Zeolite ZSM-5 Microspheres for Efficient Catalysis. Chemical Research in Chinese Universities, 2024, 40(4): 704‒711 https://doi.org/10.1007/s40242-024-4041-5

References

[[1]]
Chen L H, Sun M H, Wang Z, Yang W, Xie Z, Su B L. . Chem. Rev., 2020, 120: 11194,
CrossRef Pubmed Google scholar
[[2]]
Davis M E. . Nature, 2002, 417: 813,
CrossRef Pubmed Google scholar
[[3]]
Bensafi B, Chouat N, Djafri F. . Coordin. Chem. Rev., 2023, 496: 215397,
CrossRef Google scholar
[[4]]
Zhao S, Wang W D, Wang L, Schwieger W, Wang W, Huang J. . ACS Catal., 2020, 10: 1185,
CrossRef Google scholar
[[5]]
Tian P, Wei Y, Ye M, Liu Z. . ACS Catal., 2015, 5: 1922,
CrossRef Google scholar
[[6]]
Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. . Nature, 2009, 461: 246,
CrossRef Pubmed Google scholar
[[7]]
Lok C M, Van Doorn J, Aranda Almansa G. . Renew. Sust. Energ. Rev., 2019, 113: 109248,
CrossRef Google scholar
[[8]]
Sun M H, Gao S S, Hu Z Y, Barakat T, Liu Z, Yu S, Lyu J M, Li Y, Xu S T, Chen L H, Su B L. . Natl. Sci. Rev., 2022, 9: nwac236, pmcid: 9828477
CrossRef Pubmed Google scholar
[[9]]
Li B, Yildirim E, Li W, Qi D, Yu J, Wei J, Liu Z, Sun Z, Liu Y, Kong B, Xue Z, Liu Z, Yang S-W, Chen X, Zhao D. . Adv. Funct. Mater., 2018, 28: 1802088,
CrossRef Google scholar
[[10]]
Zhang J, Zhou A, Gawande K, Li G, Shang S, Dai C, Fan W, Han Y, Song C, Ren L, Zhang A, Guo X. . ACS Catal., 2023, 13: 3794,
CrossRef Google scholar
[[11]]
Sun M H, Zhou J, Hu Z Y, Chen L H, Li L Y, Wang Y D, Xie Z K, Turner S, Van Tendeloo G, Hasan T, Su B L. . Matter, 2020, 3: 1226,
CrossRef Google scholar
[[12]]
Sun M H, Chen L H, Yu S, Li Y, Zhou X G, Hu Z Y, Sun Y H, Xu Y, Su B L. . Angew. Chem. Int. Ed., 2020, 59: 19582,
CrossRef Google scholar
[[13]]
Chu N, Wang J, Zhang Y, Yang J, Lu J, Yin D. . Chem. Mater., 2010, 22: 2757,
CrossRef Google scholar
[[14]]
Servatan M, Zarrintaj P, Mahmodi G, Kim S-J, Ganjali M R, Saeb M R, Mozafari M. . Drug Discov. Today, 2020, 25: 642,
CrossRef Pubmed Google scholar
[[15]]
Feng C, Jiaqiang E, Han W, Deng Y, Zhang B, Zhao X, Han D. . Renew. Sust. Energ. Rev., 2021, 144: 110954,
CrossRef Google scholar
[[16]]
Fodor D, Pacosova L, Krumeich F, van Bokhoven J A. . Chem. Commun., 2014, 50: 76,
CrossRef Google scholar
[[17]]
Guan Z, Hu J, Gu Y, Zhang H, Li G, Li T. . Green Chem., 2012, 14: 1964,
CrossRef Google scholar
[[18]]
Valtchev V. . Chem. Mater., 2002, 14: 4371,
CrossRef Google scholar
[[19]]
Zhao J., Hua Z., Liu Z., Li Y., Guo L., Bu W., Cui X., Ruan M., Chen H., Shi J., Chem. Commun., 2009, 7578.
[[20]]
Cheng J, Pei S, Yue B, Qian L, He C, Zhou Y, He H. . Micropor. Mesopor. Mat., 2008, 115: 383,
CrossRef Google scholar
[[21]]
Groen J C, Bach T, Ziese U, Donk A, de Jong K P, Moulijn J A, Pérez-Ramírez J. . J. Am. Chem. Soc., 2005, 127: 10792,
CrossRef Pubmed Google scholar
[[22]]
Chen G, Li J, Wang S, Han J, Wang X, She P, Fan W, Guan B, Tian P, Yu J. . Angew. Chem. Int. Ed., 2022, 61: e202200677,
CrossRef Google scholar
[[23]]
Pagis C, Prates A R M, Farrusseng D, Bats N, Tuel A. . Chem. Mater., 2016, 28: 5205,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/