Design and Synthesis of Bismuth-based Metal-Organic Frameworks for Photothermal Energy Conversion

Rui Wang , Ziyu Wang , Qi Yin , Haixiong Liu , Tianfu Liu , Rong Cao

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (6) : 964 -969.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (6) : 964 -969. DOI: 10.1007/s40242-024-4037-1
Article

Design and Synthesis of Bismuth-based Metal-Organic Frameworks for Photothermal Energy Conversion

Author information +
History +
PDF

Abstract

Template effect of the solvents plays a key role in metal-organic frameworks (MOFs) synthesis. In addition, Bi3+ has a flexible and changeable coordination configuration, which is conducive to the construction of structurally diverse MOFs. Herein, we demonstrate that these features can be integrated into two stable bismuth-based porphyrin MOFs (named PFC-100 and PFC-101) with a wide range of light absorption. Further studies demonstrate that PFC-101 with weaker interactions of adjacent porphyrin planes achieves 22.2% photothermal conversion efficiency (PTCE), 1.5-fold higher than that of PFC-100 (14.3%) under 660 nm irradiation. This study may shed light on the impact of solvent templates on the synthesis of bismuth-based MOFs, not only enriching the MOFs library but also broadening the horizon of their potential applications.

Keywords

Metal-organic frameworks (MOFs) / Bismuth-based MOFs / Design and synthesis / Photothermal energy conversion

Cite this article

Download citation ▾
Rui Wang, Ziyu Wang, Qi Yin, Haixiong Liu, Tianfu Liu, Rong Cao. Design and Synthesis of Bismuth-based Metal-Organic Frameworks for Photothermal Energy Conversion. Chemical Research in Chinese Universities, 2024, 40(6): 964-969 DOI:10.1007/s40242-024-4037-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wu P, Wang J, Li Y, He C, Xie Z, Duan C. Adv. Funct. Mater., 2011, 21: 2788

[2]

Sahoo R, Das M C. Coord. Chem. Rev., 2021, 442: 213998

[3]

Gao Z, Li B, Ou S, Li D, Fang Q, Qiu S, Xue M. Chem. Res. Chinese Universities, 2023, 39: 1084

[4]

Hu X-J, Li Z-X, Xue H, Huang X, Cao R, Liu T-F. CCS Chem., 2020, 2: 616

[5]

Jiao L, Wang Y, Jiang H L, Xu Q. Adv. Mater., 2018, 30: 1703663

[6]

Hou J, Hou C, Li J, Hao H J. Chem. Res. Chinese Universities, 2023, 39: 1044

[7]

Zhang A A, Cheng X, He X, Liu W, Deng S, Cao R, Liu T F. Research, 2021, 2021: 9874273

[8]

Chand S, Verma G, Pal A, Pal S C, Ma S, Das M C. Chem. Eur. J., 2021, 27: 11804

[9]

Chand S, Elahi S M, Pal A, Das M C. Chem. Eur. J., 2019, 25: 6259

[10]

Pal S C, Das M C. Adv. Funct. Mater., 2021, 31: 2101584

[11]

Yi J D, Si D H, Xie R, Yin Q, Zhang M D, Wu Q, Chai G L, Huang Y B, Cao R. Angew. Chem. Int. Ed., 2021, 60: 17108

[12]

Sun J, Zhang X, Zhang D, Chen Y-P, Wang F, Li L, Liu T-F, Yang H, Song J, Cao R. CCS Chem., 2022, 4: 996

[13]

Tanaka D, Kitagawa S. Chem. Mater., 2008, 20: 922

[14]

Majano G, Martin O, Hammes M, Smeets S, Baerlocher C, Pérez-Ramírez J. Adv. Funct. Mater., 2014, 24: 3855

[15]

Qin T, Gong J, Ma J, Wang X, Wang Y, Xu Y, Shen X, Zhu D. Chem. Commun., 2014, 50: 15886

[16]

Ding R, Huang C, Lu J, Wang J, Song C, Wu J, Hou H, Fan Y. Inorg. Chem., 2015, 54: 1405

[17]

Santra A, Bharadwaj P K. Cryst. Growth Des., 2014, 14: 1476

[18]

Yang Y, Ouyang R, Xu L, Guo N, Li W, Feng K, Ouyang L, Yang Z, Zhou S, Miao Y. J. Coord. Chem., 2015, 68: 379

[19]

Zhang X, Zhang Y, Li Q, Zhou X, Li Q, Yi J, Liu Y, Zhang J. J. Mater. Chem. A, 2020, 8: 9776

[20]

Stavila V, Davidovich R L, Gulea A, Whitmire K H. Coord. Chem. Rev., 2006, 250: 2782

[21]

Longchin P, Pookmanee P, Satienperakul S, Sangsrichan S, Puntharod R, Kruefu V, Kangwansupamonkon W, Phanichphant S. Integr. Ferroelectr., 2016, 175: 18

[22]

Zhao X, Yin Q, Mao X, Cheng C, Zhang L, Wang L, Liu T-F, Li Y, Li Y. Nat. Commun., 2022, 13: 2721

[23]

Zhang R, Jin N, Jia T, Wang L, Liu J, Nan M, Qi S, Liu S, Pan Y. J. Mater. Chem. A, 2023, 11: 15380

[24]

Liu C, Zhang S, Li J, Wei J, Muellen K, Yin M. Angew. Chem. Int. Ed., 2019, 58: 1638

[25]

Mi Z, Yang P, Wang R, Unruangsri J, Yang W, Wang C, Guo J. J. Am. Chem. Soc., 2019, 141: 14433

[26]

Tan J, Namuangruk S, Kong W, Kungwan N, Guo J, Wang C. Angew. Chem. Int. Ed., 2016, 55: 13979

[27]

Chen G, Sun J, Peng Q, Sun Q, Wang G, Cai Y, Gu X, Shuai Z, Tang B Z. Adv. Mater., 2020, 32: 1908537

[28]

Qi Y, Alexandrov E V, Si D-H, Huang Q-Q, Fang Z-B, Zhang Y, Zhang A-A, Qin W-K, Li Y-L, Liu T-F, Proserpio D M. Angew. Chem. Int. Ed., 2022, 61: e202115854

[29]

Cai X, Zhang Y, Lin W. ACS Catal., 2023, 13: 15877

[30]

Chen T, Li M, Liu J. Cryst. Growth Des., 2018, 18: 2765

AI Summary AI Mindmap
PDF

264

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/