Monitoring of Cell Membrane Microenvironment Based on DNA Nanodevices

Hexin Nan, Ming Cai, Shi Kuang, Zhou Nie

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (2) : 255-267. DOI: 10.1007/s40242-024-4032-6
Review

Monitoring of Cell Membrane Microenvironment Based on DNA Nanodevices

Author information +
History +

Abstract

The cell membrane is a critical barrier for cellular homeostasis, integral to signaling and intercellular communication, and vital for understanding cellular functions and disease mechanisms. Investigating its microenvironment is crucial for uncovering the molecular basis of physiological and pathological processes associated with the cell membrane, driving the development of bioanalytical toolkits capable of dynamically monitoring the cell surface microenvironment. With the continuous advancement of functional nucleic acids and dynamic DNA nanotechnology, DNA nanodevices with controllable nanosized geometry, specific molecular recognition, and selective membrane-localization properties offer a versatile platform for probing the cell membrane microenvironment. In this review, we summarize the current biosensing and membrane-anchoring mechanisms of DNA nanodevices and highlight their use in studying key cell membrane events, including membrane lipid dynamics, transmembrane transport, receptor dimerization, and signal transduction. Furthermore, we discuss the challenges and potential future applications of DNA nanodevices in advancing cell membrane biology research and biomedical applications.

Keywords

DNA nanodevice / Cell membrane / Cellular micro-environment / Monitoring

Cite this article

Download citation ▾
Hexin Nan, Ming Cai, Shi Kuang, Zhou Nie. Monitoring of Cell Membrane Microenvironment Based on DNA Nanodevices. Chemical Research in Chinese Universities, 2024, 40(2): 255‒267 https://doi.org/10.1007/s40242-024-4032-6

References

[1]
Simons K, Ikonen E. . Nature, 1997, 387: 569,
CrossRef Google scholar
[2]
Singer S J, Nicolson G L. . Science, 1972, 175: 720,
CrossRef Google scholar
[3]
Bagheri Y, Ali A A, You M. . Front. Chem., 2020, 8: 603259,
CrossRef Google scholar
[4]
Hamill O P, Martinac B. . Physio.lRev., 2001, 81: 685
[5]
Tekpli X, Holme J A, Sergent O, Lagadic-Gossmann D. . Toxicology, 2013, 304: 141,
CrossRef Google scholar
[6]
Joyce J A, Pollard J W. . Nat. Rev. Cancer, 2009, 9: 239,
CrossRef Google scholar
[7]
Sun Y, Chen C S, Fu J. . Annu. Rev. Biophys, 2012, 41: 519,
CrossRef Google scholar
[8]
Ali M M, Kang D K, Tsang K, Fu M, Karp J M, Zhao W. . Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2012, 4: 547,
CrossRef Google scholar
[9]
Wang M, Li X, He F, Li J, Wang H-H, Nie Z. . ChemBioChem, 2022, 23: e202200119,
CrossRef Google scholar
[10]
Xu W, He W, Du Z, Zhu L, Huang K, Lu Y, Luo Y. . Angew. Chem. Int. Ed., 2021, 60: 6890,
CrossRef Google scholar
[11]
Chen Y J, Groves B, Muscat R A, Seelig G. . Nat. Nanotechnoly, 2015, 10: 748,
CrossRef Google scholar
[12]
Micura R, Höbartner C. . Chem. Soc. Rev., 2020, 49: 7331,
CrossRef Google scholar
[13]
Zheng L L, Li J Z, Li Y X, Gao J B, Dong J X, Gao Z F. . Front. Chem., 2021, 9: 732770,
CrossRef Google scholar
[14]
Gehring K, Leroy J L, Guéron M. . Nature, 1993, 363: 561,
CrossRef Google scholar
[15]
Abou Assi H, Garavís M, González C, Damha M J. . Nucleic Acids Res., 2018, 46: 8038,
CrossRef Google scholar
[16]
Dong Y, Yang Z, Liu D. . Acc. Chem. Res., 2014, 47: 1853,
CrossRef Google scholar
[17]
Chandrasekaran A R, Rusling D A. . Nucleic Acids Res., 2018, 46: 1021,
CrossRef Google scholar
[18]
Hu Y, Cecconello A, Idili A, Ricci F, Willner I. . Angew. Chem. Int. Ed., 2017, 56: 15210,
CrossRef Google scholar
[19]
Chakraborty S, Sharma S, Maiti PK, Krishnan Y. . Nucleic Acids Res., 2009, 37: 2810,
CrossRef Google scholar
[20]
Hu Y, Ying J. . Mater. Today, 2023, 63: 188,
CrossRef Google scholar
[21]
Mariottini D, Idili A, Nijenhuis MAD, Ercolani G, Ricci F. . J. Am. Chem. Soc., 2019, 141: 11367,
CrossRef Google scholar
[22]
Gong L, Zhao Z, Lv Y F, Huan S Y, Fu T, Zhang X B, Shen G L, Yu R Q. . Chem. Commun. (Camb), 2015, 51: 979,
CrossRef Google scholar
[23]
Breaker R R, Joyce G F. . Chem. Biol., 1994, 1: 223,
CrossRef Google scholar
[24]
Jia S-M, Liu X-F, Kong D-M, Shen H-X. . Biosens. Bioelectron., 2012, 351: 407,
CrossRef Google scholar
[25]
Tuerk C, Gold L. . Science, 1990, 249: 505,
CrossRef Google scholar
[26]
Li L, Xu S, Yan H, Li X, Yazd H S, Li X, Huang T, Cui C, Jiang J, Tan W. . Angew. Chem. Int. Ed., 2021, 60: 2221,
CrossRef Google scholar
[27]
DeLuca M, Shi Z, Castro C E, Arya G. . Nanoscale Horiz., 2020, 5: 182,
CrossRef Google scholar
[28]
Zhang Y, Pan V, Li X, Yang X, Li H, Wang P, Ke Y. . Small, 2019, 15: 1900228,
CrossRef Google scholar
[29]
Zhang D Y, Seelig G. . Nat. Chem., 2011, 3: 103,
CrossRef Google scholar
[30]
Xiong M, Liu Q, Tang D, Liu L, Kong G, Fu X, Yang C, Lyu Y, Meng H M, Ke G, Zhang X B. . ACS Appl. Bio. Mater., 2020, 3: 2723,
CrossRef Google scholar
[31]
Tatsumi K, Ohashi K, Teramura Y, Utoh R, Kanegae K, Watanabe N, Mukobata S, Nakayama M, Iwata H, Okano T. . Biomaterials, 2012, 33: 821,
CrossRef Google scholar
[32]
Lin M, Chen Y, Zhao S, Tang R, Nie Z, Xing H. . Angew. Chem. Int. Ed., 2022, 61: e202111647,
CrossRef Google scholar
[33]
Bailey R C, Kwong G A, Radu C G, Witte O N, Heath J R. . J. Am. Chem. Soc., 2007, 129: 1959,
CrossRef Google scholar
[34]
Zhu G, Zhang S, Song E, Zheng J, Hu R, Fang X, Tan W. . Angew. Chem. Int. Ed., 2013, 52: 5490,
CrossRef Google scholar
[35]
Li L, Chen X, Cui C, Pan X, Li X, Yazd H S, Wu Q, Qiu L, Li J, Tan W. . J. Am. Chem. Soc., 2019, 141: 17174,
CrossRef Google scholar
[36]
Fan J, Wang HH, Xie S, Wang M, Nie Z. . ChembioChem, 2020, 21: 282,
CrossRef Google scholar
[37]
Porte K, Riomet M, Figliola C, Audisio D, Taran F. . Chem. Rev., 2021, 121: 6718,
CrossRef Google scholar
[38]
Baskin J M, Prescher J A, Laughlin S T, Agard N J, Chang P V, Miller I A, Lo A, Codelli J A, Bertozzi C R. . Proc. Natl. Acad. Sci. USA, 2007, 104: 16793,
CrossRef Google scholar
[39]
Saxon E, Bertozzi C R. . Science, 2000, 287: 2007,
CrossRef Google scholar
[40]
Yeagle P L. . FASEB J., 1989, 3: 1833,
CrossRef Google scholar
[41]
Harayama T, Riezman H. . Nat. Rev. Mol. Cell Biol., 2018, 19: 281,
CrossRef Google scholar
[42]
Lombard J. . Biol. Direct, 2014, 9: 32,
CrossRef Google scholar
[43]
Hedin L E, Illergård K, Elofsson A. . J. Proteome Res., 2011, 10: 3324,
CrossRef Google scholar
[44]
Grimm D, Bauer J, Pietsch J, Infanger M, Eucker J, Eilles C, Schoenberger J. . Curr. Med. Chem., 2011, 18: 176,
CrossRef Google scholar
[45]
Robertson J, Peters M J, McInnes I B, Sattar N. . Nat. Rev. Rheumatol., 2013, 9: 513,
CrossRef Google scholar
[46]
Krishnan S, Nambiar M P, Warke V G, Fisher C U, Mitchell J, Delaney N, Tsokos G C. . J. Immunol., 2004, 172: 7821,
CrossRef Google scholar
[47]
You M, Lyu Y, Han D, Qiu L, Liu Q, Chen T, Sam Wu C, Peng L, Zhang L, Bao G, Tan W. . Nat. Nanotechnol., 2017, 12: 453,
CrossRef Google scholar
[48]
Bagheri Y, Chedid S, Shafiei F, Zhao B, You M. . Chem. Sci., 2019, 10: 11030,
CrossRef Google scholar
[49]
Bagheri Y, Ali A A, Keshri P, Chambers J, Gershenson A, You M. . Angew. Chem. Int. Ed., 2022, 61: e202112033,
CrossRef Google scholar
[50]
Ali A A, Bagheri Y, Tian Q, You M. . Nano Lett., 2022, 22: 7579,
CrossRef Google scholar
[51]
Saminathan A, Devany J, Veetil A T, Suresh B, Pillai KS, Schwake M, Krishnan Y. . Nat. Nanotechnol., 2021, 16: 96,
CrossRef Google scholar
[52]
Zheng H, Li H, Li M, Zhai T, Xie X, Li C, Jing X, Liang C, Li Q, Zuo X, Li J, Fan J, Shen J, Peng X, Fan C. . Angew. Chem. Int. Ed., 2023, 62: e202305896,
CrossRef Google scholar
[53]
Wang Y, Zhang Y, Ju H, Liu Y. . Chemistry, 2023, 5: 2182,
CrossRef Google scholar
[54]
Qiu L, Zhang T, Jiang J, Wu C, Zhu G, You M, Chen X, Zhang L, Cui C, Yu R, Tan W. . J. Am. Chem. Soc., 2014, 136: 13090,
CrossRef Google scholar
[55]
Zeng S, Liu D, Li C, Yu F, Fan L, Lei C, Huang Y, Nie Z, Yao S. . Anal. Chem., 2018, 90: 13459,
CrossRef Google scholar
[56]
Tokunaga T, Namiki S, Yamada K, Imaishi T, Nonaka H, Hirose K, Sando S. . J. Am. Chem. Soc., 2012, 134: 9561,
CrossRef Google scholar
[57]
Feng G, Luo X, Lu X, Xie S, Deng L, Kang W, He F, Zhang J, Lei C, Lin B, Huang Y, Nie Z, Yao S. . Angew. Chem. Int. Ed., 2019, 58: 6590,
CrossRef Google scholar
[58]
Zeng S, Wang S, Xie X, Yang S H, Fan J H, Nie Z, Huang Y, Wang H H. . Anal. Chem., 2020, 92: 15194,
CrossRef Google scholar
[59]
Zhao D, Chang D, Zhang Q, Chang Y, Liu B, Sun C, Li Z, Dong C, Liu M, Li Y. . J. Am. Chem. Soc., 2021, 143: 15084,
CrossRef Google scholar
[60]
Zheng J, Wang Q, Shi L, Peng P, Shi L, Li T. . Angew. Chem. Int. Ed., 2021, 60: 20858,
CrossRef Google scholar
[61]
Qiu L, Wimmers F, Weiden J, Heus H A, Tel J, Figdor C G. . Chem. Commun. (Camb), 2017, 53: 8066,
CrossRef Google scholar
[62]
Chen S, Xu Z, Li S, Liang H, Zhang C, Wang Z, Li J, Li J, Yang H. . Angew. Chem. Int. Ed., 2022, 61: e202113795,
CrossRef Google scholar
[63]
Bi S, Chen W, Fang Y, Wang Y, Zhang Q, Guo H, Ju H, Liu Y. . J. Am. Chem. Soc., 2023, 145: 5041,
CrossRef Google scholar
[64]
Hubbard S R, Miller W T. . Curr. Opin. Cell Biol., 2007, 19: 117,
CrossRef Google scholar
[65]
Liang H, Chen S, Li P, Wang L, Li J, Li J, Yang H-H, Tan W. . J. Am. Chem. Soc., 2018, 140: 4186,
CrossRef Google scholar
[66]
Yang W, Nan H, Xu Z, Huang Z, Chen S, Li J, Li J, Yang H. . Anal. Chem., 2021, 93: 12265,
CrossRef Google scholar
[67]
Li Y, Zhang X, Pan W, Li N, Tang B. . Anal. Chem., 2020, 92: 11921,
CrossRef Google scholar
[68]
Bi S, Yue S, Zhang S. . Chem. Soc. Rev., 2017, 46: 4281,
CrossRef Google scholar
[69]
Wang L, Li W, Sun J, Zhang S-Y, Yang S, Li J, Li J, Yang H-H. . Anal. Chem., 2018, 90: 14433,
CrossRef Google scholar
[70]
Wang Z., Xie X., Jin K., Xia D., Zhu J., Zhang J., Adv. Healthc. Mater., 2024, e2303398
[71]
Xu L, Zhou Z, Gou X, Shi W, Gong Y, Yi M, Cheng W, Song F. . Biosens. Bioelectron., 2021, 179: 113064,
CrossRef Google scholar
[72]
Wang J, Song J, Zhang X, Wang S M, Kang B, Li X L, Chen H Y, Xu J J. . J. Am. Chem. Soc., 2023, 145: 1273,
CrossRef Google scholar
[73]
Dong C, Fang X, Xiong J, Zhang J, Gan H, Song C, Wang L. . ACS Nano, 2022, 16: 14055,
CrossRef Google scholar
[74]
Peng R, Zheng X, Lyu Y, Xu L, Zhang X, Ke G, Liu Q, You C, Huan S, Tan W. . J. Am. Chem. Soc., 2018, 140: 9793,
CrossRef Google scholar
[75]
Chang X, Zhang C, Lv C, Sun Y, Zhang M, Zhao Y, Yang L, Han D, Tan W. . J. Am. Chem. Soc., 2019, 141: 12738,
CrossRef Google scholar
[76]
Gao Q, Zhao Y, Xu K, Zhang C, Ma Q, Qi L, Chao D, Zheng T, Yang L, Miao Y, Han D. . Angew. Chem. Int. Ed., 2020, 59: 23564,
CrossRef Google scholar
[77]
Wang D, Li S, Zhao Z, Zhang X, Tan W. . Angew. Chem. Int. Ed., 2021, 60: 15816,
CrossRef Google scholar
[78]
Yin Y, Xie W, Xiong M, Gao Y, Liu Q, Han D, Ke G, Zhang X B. . Angew. Chem. Int. Ed., 2023, 62: e202309837,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/