PDF
Abstract
The cell membrane is a critical barrier for cellular homeostasis, integral to signaling and intercellular communication, and vital for understanding cellular functions and disease mechanisms. Investigating its microenvironment is crucial for uncovering the molecular basis of physiological and pathological processes associated with the cell membrane, driving the development of bioanalytical toolkits capable of dynamically monitoring the cell surface microenvironment. With the continuous advancement of functional nucleic acids and dynamic DNA nanotechnology, DNA nanodevices with controllable nanosized geometry, specific molecular recognition, and selective membrane-localization properties offer a versatile platform for probing the cell membrane microenvironment. In this review, we summarize the current biosensing and membrane-anchoring mechanisms of DNA nanodevices and highlight their use in studying key cell membrane events, including membrane lipid dynamics, transmembrane transport, receptor dimerization, and signal transduction. Furthermore, we discuss the challenges and potential future applications of DNA nanodevices in advancing cell membrane biology research and biomedical applications.
Keywords
DNA nanodevice
/
Cell membrane
/
Cellular micro-environment
/
Monitoring
Cite this article
Download citation ▾
Hexin Nan, Ming Cai, Shi Kuang, Zhou Nie.
Monitoring of Cell Membrane Microenvironment Based on DNA Nanodevices.
Chemical Research in Chinese Universities, 2024, 40(2): 255-267 DOI:10.1007/s40242-024-4032-6
| [1] |
Simons K, Ikonen E. Nature, 1997, 387: 569.
|
| [2] |
Singer S J, Nicolson G L. Science, 1972, 175: 720.
|
| [3] |
Bagheri Y, Ali A A, You M. Front. Chem., 2020, 8: 603259.
|
| [4] |
Hamill O P, Martinac B. Physio.lRev., 2001, 81: 685.
|
| [5] |
Tekpli X, Holme J A, Sergent O, Lagadic-Gossmann D. Toxicology, 2013, 304: 141.
|
| [6] |
Joyce J A, Pollard J W. Nat. Rev. Cancer, 2009, 9: 239.
|
| [7] |
Sun Y, Chen C S, Fu J. Annu. Rev. Biophys, 2012, 41: 519.
|
| [8] |
Ali M M, Kang D K, Tsang K, Fu M, Karp J M, Zhao W. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2012, 4: 547.
|
| [9] |
Wang M, Li X, He F, Li J, Wang H-H, Nie Z. ChemBioChem, 2022, 23: e202200119.
|
| [10] |
Xu W, He W, Du Z, Zhu L, Huang K, Lu Y, Luo Y. Angew. Chem. Int. Ed., 2021, 60: 6890.
|
| [11] |
Chen Y J, Groves B, Muscat R A, Seelig G. Nat. Nanotechnoly, 2015, 10: 748.
|
| [12] |
Micura R, Höbartner C. Chem. Soc. Rev., 2020, 49: 7331.
|
| [13] |
Zheng L L, Li J Z, Li Y X, Gao J B, Dong J X, Gao Z F. Front. Chem., 2021, 9: 732770.
|
| [14] |
Gehring K, Leroy J L, Guéron M. Nature, 1993, 363: 561.
|
| [15] |
Abou Assi H, Garavís M, González C, Damha M J. Nucleic Acids Res., 2018, 46: 8038.
|
| [16] |
Dong Y, Yang Z, Liu D. Acc. Chem. Res., 2014, 47: 1853.
|
| [17] |
Chandrasekaran A R, Rusling D A. Nucleic Acids Res., 2018, 46: 1021.
|
| [18] |
Hu Y, Cecconello A, Idili A, Ricci F, Willner I. Angew. Chem. Int. Ed., 2017, 56: 15210.
|
| [19] |
Chakraborty S, Sharma S, Maiti PK, Krishnan Y. Nucleic Acids Res., 2009, 37: 2810.
|
| [20] |
Hu Y, Ying J. Mater. Today, 2023, 63: 188.
|
| [21] |
Mariottini D, Idili A, Nijenhuis MAD, Ercolani G, Ricci F. J. Am. Chem. Soc., 2019, 141: 11367.
|
| [22] |
Gong L, Zhao Z, Lv Y F, Huan S Y, Fu T, Zhang X B, Shen G L, Yu R Q. Chem. Commun. (Camb), 2015, 51: 979.
|
| [23] |
Breaker R R, Joyce G F. Chem. Biol., 1994, 1: 223.
|
| [24] |
Jia S-M, Liu X-F, Kong D-M, Shen H-X. Biosens. Bioelectron., 2012, 351: 407.
|
| [25] |
Tuerk C, Gold L. Science, 1990, 249: 505.
|
| [26] |
Li L, Xu S, Yan H, Li X, Yazd H S, Li X, Huang T, Cui C, Jiang J, Tan W. Angew. Chem. Int. Ed., 2021, 60: 2221.
|
| [27] |
DeLuca M, Shi Z, Castro C E, Arya G. Nanoscale Horiz., 2020, 5: 182.
|
| [28] |
Zhang Y, Pan V, Li X, Yang X, Li H, Wang P, Ke Y. Small, 2019, 15: 1900228.
|
| [29] |
Zhang D Y, Seelig G. Nat. Chem., 2011, 3: 103.
|
| [30] |
Xiong M, Liu Q, Tang D, Liu L, Kong G, Fu X, Yang C, Lyu Y, Meng H M, Ke G, Zhang X B. ACS Appl. Bio. Mater., 2020, 3: 2723.
|
| [31] |
Tatsumi K, Ohashi K, Teramura Y, Utoh R, Kanegae K, Watanabe N, Mukobata S, Nakayama M, Iwata H, Okano T. Biomaterials, 2012, 33: 821.
|
| [32] |
Lin M, Chen Y, Zhao S, Tang R, Nie Z, Xing H. Angew. Chem. Int. Ed., 2022, 61: e202111647.
|
| [33] |
Bailey R C, Kwong G A, Radu C G, Witte O N, Heath J R. J. Am. Chem. Soc., 2007, 129: 1959.
|
| [34] |
Zhu G, Zhang S, Song E, Zheng J, Hu R, Fang X, Tan W. Angew. Chem. Int. Ed., 2013, 52: 5490.
|
| [35] |
Li L, Chen X, Cui C, Pan X, Li X, Yazd H S, Wu Q, Qiu L, Li J, Tan W. J. Am. Chem. Soc., 2019, 141: 17174.
|
| [36] |
Fan J, Wang HH, Xie S, Wang M, Nie Z. ChembioChem, 2020, 21: 282.
|
| [37] |
Porte K, Riomet M, Figliola C, Audisio D, Taran F. Chem. Rev., 2021, 121: 6718.
|
| [38] |
Baskin J M, Prescher J A, Laughlin S T, Agard N J, Chang P V, Miller I A, Lo A, Codelli J A, Bertozzi C R. Proc. Natl. Acad. Sci. USA, 2007, 104: 16793.
|
| [39] |
Saxon E, Bertozzi C R. Science, 2000, 287: 2007.
|
| [40] |
Yeagle P L. FASEB J., 1989, 3: 1833.
|
| [41] |
Harayama T, Riezman H. Nat. Rev. Mol. Cell Biol., 2018, 19: 281.
|
| [42] |
Lombard J. Biol. Direct, 2014, 9: 32.
|
| [43] |
Hedin L E, Illergård K, Elofsson A. J. Proteome Res., 2011, 10: 3324.
|
| [44] |
Grimm D, Bauer J, Pietsch J, Infanger M, Eucker J, Eilles C, Schoenberger J. Curr. Med. Chem., 2011, 18: 176.
|
| [45] |
Robertson J, Peters M J, McInnes I B, Sattar N. Nat. Rev. Rheumatol., 2013, 9: 513.
|
| [46] |
Krishnan S, Nambiar M P, Warke V G, Fisher C U, Mitchell J, Delaney N, Tsokos G C. J. Immunol., 2004, 172: 7821.
|
| [47] |
You M, Lyu Y, Han D, Qiu L, Liu Q, Chen T, Sam Wu C, Peng L, Zhang L, Bao G, Tan W. Nat. Nanotechnol., 2017, 12: 453.
|
| [48] |
Bagheri Y, Chedid S, Shafiei F, Zhao B, You M. Chem. Sci., 2019, 10: 11030.
|
| [49] |
Bagheri Y, Ali A A, Keshri P, Chambers J, Gershenson A, You M. Angew. Chem. Int. Ed., 2022, 61: e202112033.
|
| [50] |
Ali A A, Bagheri Y, Tian Q, You M. Nano Lett., 2022, 22: 7579.
|
| [51] |
Saminathan A, Devany J, Veetil A T, Suresh B, Pillai KS, Schwake M, Krishnan Y. Nat. Nanotechnol., 2021, 16: 96.
|
| [52] |
Zheng H, Li H, Li M, Zhai T, Xie X, Li C, Jing X, Liang C, Li Q, Zuo X, Li J, Fan J, Shen J, Peng X, Fan C. Angew. Chem. Int. Ed., 2023, 62: e202305896.
|
| [53] |
Wang Y, Zhang Y, Ju H, Liu Y. Chemistry, 2023, 5: 2182.
|
| [54] |
Qiu L, Zhang T, Jiang J, Wu C, Zhu G, You M, Chen X, Zhang L, Cui C, Yu R, Tan W. J. Am. Chem. Soc., 2014, 136: 13090.
|
| [55] |
Zeng S, Liu D, Li C, Yu F, Fan L, Lei C, Huang Y, Nie Z, Yao S. Anal. Chem., 2018, 90: 13459.
|
| [56] |
Tokunaga T, Namiki S, Yamada K, Imaishi T, Nonaka H, Hirose K, Sando S. J. Am. Chem. Soc., 2012, 134: 9561.
|
| [57] |
Feng G, Luo X, Lu X, Xie S, Deng L, Kang W, He F, Zhang J, Lei C, Lin B, Huang Y, Nie Z, Yao S. Angew. Chem. Int. Ed., 2019, 58: 6590.
|
| [58] |
Zeng S, Wang S, Xie X, Yang S H, Fan J H, Nie Z, Huang Y, Wang H H. Anal. Chem., 2020, 92: 15194.
|
| [59] |
Zhao D, Chang D, Zhang Q, Chang Y, Liu B, Sun C, Li Z, Dong C, Liu M, Li Y. J. Am. Chem. Soc., 2021, 143: 15084.
|
| [60] |
Zheng J, Wang Q, Shi L, Peng P, Shi L, Li T. Angew. Chem. Int. Ed., 2021, 60: 20858.
|
| [61] |
Qiu L, Wimmers F, Weiden J, Heus H A, Tel J, Figdor C G. Chem. Commun. (Camb), 2017, 53: 8066.
|
| [62] |
Chen S, Xu Z, Li S, Liang H, Zhang C, Wang Z, Li J, Li J, Yang H. Angew. Chem. Int. Ed., 2022, 61: e202113795.
|
| [63] |
Bi S, Chen W, Fang Y, Wang Y, Zhang Q, Guo H, Ju H, Liu Y. J. Am. Chem. Soc., 2023, 145: 5041.
|
| [64] |
Hubbard S R, Miller W T. Curr. Opin. Cell Biol., 2007, 19: 117.
|
| [65] |
Liang H, Chen S, Li P, Wang L, Li J, Li J, Yang H-H, Tan W. J. Am. Chem. Soc., 2018, 140: 4186.
|
| [66] |
Yang W, Nan H, Xu Z, Huang Z, Chen S, Li J, Li J, Yang H. Anal. Chem., 2021, 93: 12265.
|
| [67] |
Li Y, Zhang X, Pan W, Li N, Tang B. Anal. Chem., 2020, 92: 11921.
|
| [68] |
Bi S, Yue S, Zhang S. Chem. Soc. Rev., 2017, 46: 4281.
|
| [69] |
Wang L, Li W, Sun J, Zhang S-Y, Yang S, Li J, Li J, Yang H-H. Anal. Chem., 2018, 90: 14433.
|
| [70] |
Wang Z., Xie X., Jin K., Xia D., Zhu J., Zhang J., Adv. Healthc. Mater., 2024, e2303398
|
| [71] |
Xu L, Zhou Z, Gou X, Shi W, Gong Y, Yi M, Cheng W, Song F. Biosens. Bioelectron., 2021, 179: 113064.
|
| [72] |
Wang J, Song J, Zhang X, Wang S M, Kang B, Li X L, Chen H Y, Xu J J. J. Am. Chem. Soc., 2023, 145: 1273.
|
| [73] |
Dong C, Fang X, Xiong J, Zhang J, Gan H, Song C, Wang L. ACS Nano, 2022, 16: 14055.
|
| [74] |
Peng R, Zheng X, Lyu Y, Xu L, Zhang X, Ke G, Liu Q, You C, Huan S, Tan W. J. Am. Chem. Soc., 2018, 140: 9793.
|
| [75] |
Chang X, Zhang C, Lv C, Sun Y, Zhang M, Zhao Y, Yang L, Han D, Tan W. J. Am. Chem. Soc., 2019, 141: 12738.
|
| [76] |
Gao Q, Zhao Y, Xu K, Zhang C, Ma Q, Qi L, Chao D, Zheng T, Yang L, Miao Y, Han D. Angew. Chem. Int. Ed., 2020, 59: 23564.
|
| [77] |
Wang D, Li S, Zhao Z, Zhang X, Tan W. Angew. Chem. Int. Ed., 2021, 60: 15816.
|
| [78] |
Yin Y, Xie W, Xiong M, Gao Y, Liu Q, Han D, Ke G, Zhang X B. Angew. Chem. Int. Ed., 2023, 62: e202309837.
|