Large-scale Preparation of Black CeO x with Stable Oxygen Vacancies

Huan Peng, Mengmeng Jiang, Jinfeng Ye, Lei Wang, Shunmin Ding, Chao Cehn

Chemical Research in Chinese Universities ›› 2024, Vol. 41 ›› Issue (1) : 40-47.

Chemical Research in Chinese Universities ›› 2024, Vol. 41 ›› Issue (1) : 40-47. DOI: 10.1007/s40242-024-4028-2
Article

Large-scale Preparation of Black CeO x with Stable Oxygen Vacancies

Author information +
History +

Abstract

Oxygen vacancy in ceria is a crucial regulation factor for modifying materials. The reduced oxygen vacancy will undergo rapid recombination and deactivation due to the imbalance perturbation of active oxygen species, thereby restricting their larger-scale application. In this work, we proposed a strategy to stabilize oxygen vacancy in four black CeO x(Si) (0<x<2) by quartz sand doping reduction. The formation of a Ce-Ov-Si (Ov denoted as oxygen vacancy) interface, instrumental in constructing stable oxygen vacancies, is facilitated by rich hydroxyl groups. Characterizations of CeO x(Si) reveal that the heterogeneous hydrogen at the Ce-O-Si interface encourages the lattice distortion in ceria to obtain stable oxygen vacancies. Guided by the reusable feature, quartz sand doping reduction is a facile and feasible strategy to stabilize the oxygen vacancy of black CeO x for advanced materials on a large scale.

Cite this article

Download citation ▾
Huan Peng, Mengmeng Jiang, Jinfeng Ye, Lei Wang, Shunmin Ding, Chao Cehn. Large-scale Preparation of Black CeO x with Stable Oxygen Vacancies. Chemical Research in Chinese Universities, 2024, 41(1): 40‒47 https://doi.org/10.1007/s40242-024-4028-2

References

[[1]]
Hamamoto N, Tatsumi T, Takao M, Toyao T, Hinuma Y, Shimizu K-I, Kamachi T J. Phys. Chem. C, 2021, 125: 3827.
CrossRef Google scholar
[[2]]
Zhang S, Wang W, Gao Y, Deng S, Ding L, Zhuo H, Bao Z, Ji W, Qiu C, Wang J Appl. Surf. Sci., 2021, 567: 150680.
CrossRef Google scholar
[[3]]
Zhang J, Wang L, Hu X, Shao Q, Xu X, Long C J. Clean. Pro., 2021, 318: 128564.
CrossRef Google scholar
[[4]]
Pei Q, Qiu G, Yu Y, Wang J, Tan K C, Guo J, Liu L, Cao H, He T, Chen P J. Phys. Chem. Lett., 2021, 12: 10646.
CrossRef Google scholar
[[5]]
Ding R-R, Li W-Q, He C-S, Wang Y-R, Liu X-C, Zhou G-N, Mu Y Appl. Catal. B: Environ., 2021, 291: 120069.
CrossRef Google scholar
[[6]]
Li W, Shen X, Zeng R, Chen J, Xiao W, Ding S, Chen C, Zhang R, Zhang N Appl. Surf. Sci., 2019, 492: 818.
CrossRef Google scholar
[[7]]
Liu X, Li X, Qian H, Chi J, Chen B, Wang S, Chen C, Zhang N Int. J. Hydrogen Energ., 2018, 43: 23299.
CrossRef Google scholar
[[8]]
Wang L, Peng H, Shi S-L, Hu Z, Zhang B-Z, Ding S-M, Wang S-H, Chen C Appl. Surf. Sci., 2022, 573: 151611.
CrossRef Google scholar
[[9]]
Zhang L, Fang Q, Huang Y, Xu K, Chu P K, Ma F Anal. Chem., 2018, 90: 9821.
CrossRef Google scholar
[[10]]
Zhao Y, Liang S, Shi X, Yang Y, Tang Y, Lu B, Zhou J Adv. Funct. Mater., 2022, 32: 202203819
[[11]]
Han Z K, Zhang L, Liu M, Ganduglia-Pirovano M V, Gao Y Front. Chem., 2019, 7: 436.
CrossRef Google scholar
[[12]]
Davó-Quiñonero A, Navlani-García M, Lozano-Castelló D, Bueno-López A, Anderson J A ACS Catal., 2016, 6: 1723.
CrossRef Google scholar
[[13]]
Zhang S, Huang Z Q, Ma Y, Gao W, Li J, Cao F, Li L, Chang C R, Qu Y Nat. Commun., 2017, 8: 15266.
CrossRef Google scholar
[[14]]
Bacariza M C, Biset-Peiró M, Graça I, Guilera J, Morante J, Lopes J M, Andreu T, Henriques C J. CO2 Util., 2018, 26: 202.
CrossRef Google scholar
[[15]]
Gwozdz K, Stübner R, Kolkovsky V, Weber J Applied Physics Letters, 2017, 111: 032102.
CrossRef Google scholar
[[16]]
Shen X, Li W, Ding S, Ma X, Wu S, Xiao W, Zeng R, Hong S, Chen C J. Rare Earth, 2022, 40: 434.
CrossRef Google scholar
[[17]]
Zhang Y, Lu J, Zhang L, Fu T, Zhang J, Zhu X, Gao X, He D, Luo Y, Dionysiou D D, Zhu W Appl. Catal. B: Environ, 2022, 309: 121249.
CrossRef Google scholar
[[18]]
Cao Y, Zhou P, Tu Y, Liu Z, Dong B W, Azad A, Ma D, Wang D, Zhang X, Yang Y, Jiang S D, Zhu R, Guo S, Mo F, Ma W iScience, 2019, 20: 195.
CrossRef Google scholar
[[19]]
Trogadas P, Parrondo J, Ramani V ACS Appl. Mater. Interfaces, 2012, 4: 5098.
CrossRef Google scholar
[[20]]
D’Angelo A M, Chaffee A L ACS Omega, 2017, 2: 2544.
CrossRef Google scholar
[[21]]
Wang L., Peng H., Xie W.-Q., Shi S.-L., Yuan M.-W., Zhao D., Wang S.-H., Chen C., Chem. Eng. Sci., 2022, 117675.
[[22]]
Park I-H, Yang H-O, Kim J-H, Kim K-J Cryst. Growth Des., 2019, 19: 4990.
CrossRef Google scholar
[[23]]
Grinter D C, Allan M, Yang H J, Salcedo A, Murgida G E, Shaw B J, Pang C L, Idriss H, Ganduglia-Pirovano M V, Thornton G Angew. Chem. Int. Ed. Engl., 2021, 60: 13835.
CrossRef Google scholar
[[24]]
Kraynis O, Lubomirsky I, Livneh T J. Phys. Chem. C, 2019, 123: 24111.
CrossRef Google scholar
[[25]]
Qi J, Zhou S, Xie K, Lin S J. Energ. Chem., 2021, 60: 249.
CrossRef Google scholar
[[26]]
Ren X, Zhang Z, Wang Y, Lu J, An J, Zhang J, Wang M, Wang X, Luo Y RSC Adv., 2019, 9: 15229.
CrossRef Google scholar
[[27]]
Zeng Y, Wang Y, Zhang S, Zhong Q Phys. Chem. Chem. Phys., 2018, 20: 22744.
CrossRef Google scholar
[[28]]
Lv X, Lu G, Wang Z-Q, Xu Z-N, Guo G-C ACS Catal., 2017, 7: 4519.
CrossRef Google scholar
[[29]]
Coenen K, Gallucci F, Mezari B, Hensen E, van Sint Annaland M J. CO2 Util., 2018, 24: 228.
CrossRef Google scholar
[[30]]
Silva I D C, Sigoli F A, Mazali I O J. Phys. Chem. C, 2017, 121: 12928.
CrossRef Google scholar
[[31]]
Guhel Y, Bernard J, Boudart B Microelectron. Eng., 2014, 118: 29.
CrossRef Google scholar
[[32]]
Sahir S, Yerriboina N P, Han S-Y, Han K-M, Kim T-G, Mahadev N, Park J-G Appl. Surf. Sci., 2021, 545: 149035.
CrossRef Google scholar
[[33]]
Wang Z-Q, Chu D-R, Zhou H, Wu X-P, Gong X-Q ACS Catal., 2021, 12: 624.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/