Large-scale Preparation of Black CeO x with Stable Oxygen Vacancies

Huan Peng , Mengmeng Jiang , Jinfeng Ye , Lei Wang , Shunmin Ding , Chao Chen

Chemical Research in Chinese Universities ›› 2024, Vol. 41 ›› Issue (1) : 40 -47.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 41 ›› Issue (1) : 40 -47. DOI: 10.1007/s40242-024-4028-2
Article

Large-scale Preparation of Black CeO x with Stable Oxygen Vacancies

Author information +
History +
PDF

Abstract

Oxygen vacancy in ceria is a crucial regulation factor for modifying materials. The reduced oxygen vacancy will undergo rapid recombination and deactivation due to the imbalance perturbation of active oxygen species, thereby restricting their larger-scale application. In this work, we proposed a strategy to stabilize oxygen vacancy in four black CeO x(Si) (0<x<2) by quartz sand doping reduction. The formation of a Ce-Ov-Si (Ov denoted as oxygen vacancy) interface, instrumental in constructing stable oxygen vacancies, is facilitated by rich hydroxyl groups. Characterizations of CeO x(Si) reveal that the heterogeneous hydrogen at the Ce-O-Si interface encourages the lattice distortion in ceria to obtain stable oxygen vacancies. Guided by the reusable feature, quartz sand doping reduction is a facile and feasible strategy to stabilize the oxygen vacancy of black CeO x for advanced materials on a large scale.

Keywords

Black CeO x / Oxygen vacancy / Ce-Ov-Si / Stabilization / Quartz sand

Cite this article

Download citation ▾
Huan Peng, Mengmeng Jiang, Jinfeng Ye, Lei Wang, Shunmin Ding, Chao Chen. Large-scale Preparation of Black CeO x with Stable Oxygen Vacancies. Chemical Research in Chinese Universities, 2024, 41(1): 40-47 DOI:10.1007/s40242-024-4028-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HamamotoN, TatsumiT, TakaoM, ToyaoT, HinumaY, ShimizuK-I, KamachiT J. Phys. Chem. C, 2021, 125: 3827

[2]

ZhangS, WangW, GaoY, DengS, DingL, ZhuoH, BaoZ, JiW, QiuC, WangJ Appl. Surf. Sci., 2021, 567: 150680

[3]

ZhangJ, WangL, HuX, ShaoQ, XuX, LongC J. Clean. Pro., 2021, 318: 128564

[4]

PeiQ, QiuG, YuY, WangJ, TanK C, GuoJ, LiuL, CaoH, HeT, ChenP J. Phys. Chem. Lett., 2021, 12: 10646

[5]

DingR-R, LiW-Q, HeC-S, WangY-R, LiuX-C, ZhouG-N, MuY Appl. Catal. B: Environ., 2021, 291: 120069

[6]

LiW, ShenX, ZengR, ChenJ, XiaoW, DingS, ChenC, ZhangR, ZhangN Appl. Surf. Sci., 2019, 492: 818

[7]

LiuX, LiX, QianH, ChiJ, ChenB, WangS, ChenC, ZhangN Int. J. Hydrogen Energ., 2018, 43: 23299

[8]

WangL, PengH, ShiS-L, HuZ, ZhangB-Z, DingS-M, WangS-H, ChenC Appl. Surf. Sci., 2022, 573: 151611

[9]

ZhangL, FangQ, HuangY, XuK, ChuP K, MaF Anal. Chem., 2018, 90: 9821

[10]

ZhaoY, LiangS, ShiX, YangY, TangY, LuB, ZhouJ Adv. Funct. Mater., 2022, 32: 202203819

[11]

HanZ K, ZhangL, LiuM, Ganduglia-PirovanoM V, GaoY Front. Chem., 2019, 7: 436

[12]

Davó-QuiñoneroA, Navlani-GarcíaM, Lozano-CastellóD, Bueno-LópezA, AndersonJ A ACS Catal., 2016, 6: 1723

[13]

ZhangS, HuangZ Q, MaY, GaoW, LiJ, CaoF, LiL, ChangC R, QuY Nat. Commun., 2017, 8: 15266

[14]

BacarizaM C, Biset-PeiróM, GraçaI, GuileraJ, MoranteJ, LopesJ M, AndreuT, HenriquesC J. CO2 Util., 2018, 26: 202

[15]

GwozdzK, StübnerR, KolkovskyV, WeberJ Applied Physics Letters, 2017, 111: 032102

[16]

ShenX, LiW, DingS, MaX, WuS, XiaoW, ZengR, HongS, ChenC J. Rare Earth, 2022, 40: 434

[17]

ZhangY, LuJ, ZhangL, FuT, ZhangJ, ZhuX, GaoX, HeD, LuoY, DionysiouD D, ZhuW Appl. Catal. B: Environ, 2022, 309: 121249

[18]

CaoY, ZhouP, TuY, LiuZ, DongB W, AzadA, MaD, WangD, ZhangX, YangY, JiangS D, ZhuR, GuoS, MoF, MaW iScience, 2019, 20: 195

[19]

TrogadasP, ParrondoJ, RamaniV ACS Appl. Mater. Interfaces, 2012, 4: 5098

[20]

D’AngeloA M, ChaffeeA L ACS Omega, 2017, 2: 2544

[21]

Wang L., Peng H., Xie W.-Q., Shi S.-L., Yuan M.-W., Zhao D., Wang S.-H., Chen C., Chem. Eng. Sci., 2022, 117675.

[22]

ParkI-H, YangH-O, KimJ-H, KimK-J Cryst. Growth Des., 2019, 19: 4990

[23]

GrinterD C, AllanM, YangH J, SalcedoA, MurgidaG E, ShawB J, PangC L, IdrissH, Ganduglia-PirovanoM V, ThorntonG Angew. Chem. Int. Ed. Engl., 2021, 60: 13835

[24]

KraynisO, LubomirskyI, LivnehT J. Phys. Chem. C, 2019, 123: 24111

[25]

QiJ, ZhouS, XieK, LinS J. Energ. Chem., 2021, 60: 249

[26]

RenX, ZhangZ, WangY, LuJ, AnJ, ZhangJ, WangM, WangX, LuoY RSC Adv., 2019, 9: 15229

[27]

ZengY, WangY, ZhangS, ZhongQ Phys. Chem. Chem. Phys., 2018, 20: 22744

[28]

LvX, LuG, WangZ-Q, XuZ-N, GuoG-C ACS Catal., 2017, 7: 4519

[29]

CoenenK, GallucciF, MezariB, HensenE, van Sint AnnalandM J. CO2 Util., 2018, 24: 228

[30]

SilvaI D C, SigoliF A, MazaliI O J. Phys. Chem. C, 2017, 121: 12928

[31]

GuhelY, BernardJ, BoudartB Microelectron. Eng., 2014, 118: 29

[32]

SahirS, YerriboinaN P, HanS-Y, HanK-M, KimT-G, MahadevN, ParkJ-G Appl. Surf. Sci., 2021, 545: 149035

[33]

WangZ-Q, ChuD-R, ZhouH, WuX-P, GongX-Q ACS Catal., 2021, 12: 624

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

207

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/