Enzyme-driven Nanorobots Walking Along Predesigned Tracks on the DNA Origami for Cargo Transport and Catalysis

Cunpeng Nie , Tianran Ma , Tingting Chen , Xia Chu

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (2) : 333 -342.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (2) : 333 -342. DOI: 10.1007/s40242-024-4025-5
Article

Enzyme-driven Nanorobots Walking Along Predesigned Tracks on the DNA Origami for Cargo Transport and Catalysis

Author information +
History +
PDF

Abstract

In molecular engineering, designing and synthesizing molecular machines with capable of performing complex tasks, remains a formidable challenge. DNA is an excellent candidate for building molecular robots because it is highly programmable. Here, we present an artificial nanorobot, in which a DNA cube serves as the inert ‘body’, and nucleic acid catalysts based on an enzymatic nicking reaction act as the ‘legs’ for walking. The nanorobot can execute a series of actions, such as ‘start’, ‘turn’, and ‘stop’ when it walks along a predefined track. Its performance could be confirmed and monitored by using an atomic force microscope (AFM) and fluorescence spectroscopy. Inspired by biological machines, we artificially designed a series of specialized tasks that combined walking with control of cargo transport and catalysis. Real-time fluorescence kinetics curves provide monitoring signals for cargo transport and catalytic processes. Our work can enrich the toolbox of DNA machinery and has great potential for engineering molecular nanofactories.

Keywords

DNA origami / DNA nanorobot / Controlled cargo transport / DNAzyme catalysis

Cite this article

Download citation ▾
Cunpeng Nie, Tianran Ma, Tingting Chen, Xia Chu. Enzyme-driven Nanorobots Walking Along Predesigned Tracks on the DNA Origami for Cargo Transport and Catalysis. Chemical Research in Chinese Universities, 2024, 40(2): 333-342 DOI:10.1007/s40242-024-4025-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Schliwa M, Woehlke G. Nature, 2003, 422: 759.

[2]

Yildiz A, Tomishige M, Vale R D, Selvin P R. Science, 2004, 303: 676.

[3]

Howard J, Hudspeth A J, Vale R D. Nature, 1989, 342: 154.

[4]

van. Den. Heuvel M G L, Dekker C. Science, 2007, 377: 333.

[5]

Wang F, Zhag X, Liu X, Fan C, Li Q. Small, 2019, 15: 1900013.

[6]

Funck T, Nicoli F, Kuzyk A, Liedl T. Angew. Chem. Int. Ed., 2018, 57: 13495.

[7]

Koirala D, Shrestha P, Emura T, Hidaka K, Mandal S, Endo M, Sugiyama H, Mao H. Angew. Chem. Int. Ed., 2014, 53: 8137.

[8]

Willner E M, Kamada Y, Suzuki Y, Emura T, Hidaka K, Dietz H, Sugiyama H, Endo M. Angew. Chem. Int. Ed., 2017, 56: 15324.

[9]

Yang Y, Endo M, Hidaka K, Sugiyama H. J. Am. Chem. Soc., 2012, 134: 20645.

[10]

Sun L, Gao Y, Xu Y, Chao J, Liu H, Wang L, Li D, Fan C. J. Am. Chem. Soc., 2017, 139: 17525.

[11]

Zhang D Y, Seelig G. Nat. Chem., 2011, 3: 103.

[12]

Pinheiro A V, Han D, Shih W M, Yan H. Nat. Nanotechnol., 2011, 6: 763.

[13]

Seeman N C, Sleiman H F. Nat. Rev. Mater., 2017, 3: 17068.

[14]

Zhang Y, Pan V, Li X, Yang X, Li H, Wang P, Ke Y. Small, 2019, 15: 1900228.

[15]

Shin J-S, Pierce N A. J. Am. Chem. Soc., 2004, 126: 10834.

[16]

Bath J, Green S J, Turberfield A J. Angew. Chem. Int. Ed., 2005, 44: 4358.

[17]

Wickham S F J, Endo M, Katsuda Y, Hidaka K, Bath J, Sugiyama H, Turberfield A J. Nat. Nanotechnol., 2011, 6: 166.

[18]

Cha T-G, Pan J, Chen H, Salgado J, Li X, Mao C, Choi J H. Nat. Nanotechnol., 2014, 9: 39.

[19]

Omabegho T, Sha R, Seeman N C. Science, 2009, 324: 67.

[20]

You M, Chen Y, Zhang X, Liu H, Wang R, Wang K, Williams K R, Tan W. Angew. Chem. Int. Ed., 2012, 51: 2457.

[21]

Perl A, Gomez-Casado A, Thompson D, Dam H H, Jonkheijm P, Reinhoudt D N, Huskens J. Nat. Chem., 2011, 3: 317.

[22]

Urban M J, Zhou C, Duan X, Liu N. Nano Lett., 2015, 15: 8392.

[23]

Zhou C, Duan X, Liu N. Nat. Commun., 2015, 6: 8102.

[24]

Urban M J, Both S, Zhou C, Kuzyk A, Lindfors K, Weiss T, Liu N. Nat. Commun., 2018, 9: 1454.

[25]

Cha T-G, Pan J, Chen H, Salgado J, Li X, Mao C, Choi J H. Nat. Nanotechnol., 2014, 9: 39.

[26]

Cha T-G, Pan J, Chen H, Robinson H N, Li X, Mao C, Choi J H. J. Am. Chem. Soc., 2015, 137: 9429.

[27]

Lund K, Manzo A J, Dabby N, Michelotti N, Johnson-Buck A, Nangreave J, Taylor S, Pei R, Stojanovic M N, Walter N G, Winfree E, Yan H. Nature, 2010, 465: 206.

[28]

Yehl K, Mugler A, Vivek S, Liu Y, Zhang Y, Fan M, Weeks E R, Salaita K. Nat. Nanotechnol., 201, 11: 184.

[29]

Edwardson T G W, Carneiro K M M, McLaughlin C K, Serpell C J, Sleiman H F. Nature Chem., 2013, 5: 868.

[30]

Qiu L, Wu C, You M, Han D, Chen T, Zhu G, Jiang J, Yu R, Tan W. J. Am. Chem. Soc., 2013, 135: 12952.

[31]

Zhao J, Li Y, Yu M, Gu Z, Li L, Zhao Y. Nano Lett., 2020, 20: 874.

[32]

Lin M, Yi X, Wan H, Zhang J, Huang F, Xia F. Anal. Chem., 2020, 92: 9963.

[33]

Yu F, Li X, Zhao J, Zhao Y, Li L. Angew. Chem. Int. Ed., 2023, 62: e202305837.

[34]

Zhou Y, Ma W, Sun R, Liu B, Zhang X, Yang H. Biosens. Bioelectron., 2022, 214: 114549.

[35]

Rothemund P W K. Nature, 200, 440: 297.

[36]

Heiter D F, Lunnen K D, Wilson G G. J. Mol. Biol., 2005, 348: 631.

[37]

Xue L, Zhou X, Xing D. Chem. Commun., 2010, 46: 7373.

[38]

Tang Y, Wei W, Liu Y, Liu S. Anal. Chem., 2021, 93: 4960.

[39]

Antal T, Krapivsky P L. Phys. Rev. E, 2007, 76: 021121.

[40]

Wang S, Liu Y, Shang J, Wang H, Yang C, Liu X, Wang F. Anal. Sens., 2023, 3: e202200065.

[41]

Yan J, Ran M, Shen X, Zhang H. Adv. Mater., 2023, 35: 2300374.

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/