Nanostructured ZnO/ZnS with Type-II Hetero-junction for Efficient CO2 Photoreduction

Qi Xiao, Ting Liu, Qianhe Zhou, Liangyu Li, Chuntao Chang, Dawei Gao, Danyang Li, Feifei You

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (3) : 484-489. DOI: 10.1007/s40242-024-4022-8
Article

Nanostructured ZnO/ZnS with Type-II Hetero-junction for Efficient CO2 Photoreduction

Author information +
History +

Abstract

Photocatalytic CO2 reduction driven by solar light is a green approach that can decrease the greenhouse effect induced by high CO2 concentration in the atmosphere and generate carbon-based chemicals/fuels as well. In this paper, non-metal co-catalysts ZnO/ZnS type-II hetero-junction nanoparticles with a rough surface were prepared through a hydrothermal process. When used as a photocatalyst for CO2 reduction, the optimal one showed good cycle stability and a higher yield rate of 27.8 µmol·g−1·h−1 for CO2 conversion into CO. The outstanding catalytic activity originated from i) the rich interfaces between ZnO and ZnS in the nanoscale could significantly reduce the delivery path of carriers and improve the utilization efficiency of photo-excited electron/hole pairs and ii) enriched surface oxygen defects could supply much more reaction active sites for CO2 adsorption.

Keywords

ZnO/ZnS / Photocatalytic / CO2 reduction / Oxygen defect

Cite this article

Download citation ▾
Qi Xiao, Ting Liu, Qianhe Zhou, Liangyu Li, Chuntao Chang, Dawei Gao, Danyang Li, Feifei You. Nanostructured ZnO/ZnS with Type-II Hetero-junction for Efficient CO2 Photoreduction. Chemical Research in Chinese Universities, 2024, 40(3): 484‒489 https://doi.org/10.1007/s40242-024-4022-8

References

[[1]]
Overa S, Ko B H, Zhao Y, Jiao F. . Acc. Chem. Res., 2022, 55: 638,
CrossRef Pubmed Google scholar
[[2]]
Qiu L-Q, Li H-R, He L-N. . Acc. Chem. Res., 2023, 56: 2225,
CrossRef Pubmed Google scholar
[[3]]
Fang S, Rahaman M, Bharti J, Reisner E, Robert M, Ozin G A, Hu Y H. . Nat. Rev. Method Prime., 2023, 3: 61,
CrossRef Google scholar
[[4]]
Lu M, Zhang M, Liu J, Chen Y, Liao J P, Yang M Y, Cai Y P, Li S L, Lan Y Q. . Angew. Chem. Int. Ed., 2022, 61: e202200003,
CrossRef Google scholar
[[5]]
Wei Y, You F, Zhao D, Wan J, Gu L, Wang D. . Angew. Chem. Int. Ed., 2022, 61: e202212049,
CrossRef Google scholar
[[6]]
Zou L, Sa R, Zhong H, Lv H, Wang X, Wang R. . ACS Catal., 2022, 12: 3550,
CrossRef Google scholar
[[7]]
Wang T, Chen L, Chen C, Huang M, Huang Y, Liu S, Li B. . ACS Nano, 2022, 16: 2306,
CrossRef Pubmed Google scholar
[[8]]
Wang J, Shi Y, Wang Y, Li Z. . ACS Energy Lett., 2022, 7: 2043,
CrossRef Google scholar
[[9]]
Xue L, Zhang C, Shi T, Liu S, Zhang H, Sun M, Liu F, Liu Y, Wang Y, Gu X. . Chem. Eng. J., 2023, 452: 139701,
CrossRef Google scholar
[[10]]
Zhang Y, Xu M, Zhou W, Song X, Liu X, Zhang J, Chen S, Huo P. . J. Colloid Interf. Sci., 2023, 650: 1762,
CrossRef Google scholar
[[11]]
Li Q, Gao Y, Zhang M, Gao H, Chen J, Jia H. . Appl. Catal. B-Environ., 2022, 303: 120905,
CrossRef Google scholar
[[12]]
Ma X, Li D, Jin H, Zeng X, Qi J, Yang Z, You F, Yuan F. . J. Colloid Interf. Sci., 2023, 648: 1025,
CrossRef Google scholar
[[13]]
Han C, Zhang X, Huang S, Hu Y, Yang Z, Li T T, Li Q, Qian J. . Adv. Sci., 2023, 10: 2300797,
CrossRef Google scholar
[[14]]
Ma X, Li D, Jiang Y, Jin H, Bai L, Qi J, You F, Yuan F. . J. Colloid Interf. Sci., 2022, 628: 768,
CrossRef Google scholar
[[15]]
Xue L, Zhang C, Wu J, Fan Q-Y, Liu Y, Wu Y, Li J, Zhang H, Liu F, Zeng S. . Appl. Catal. B-Environ., 2022, 304: 120951,
CrossRef Google scholar
[[16]]
Wang Y, Fan G, Wang S, Li Y, Guo Y, Luan D, Gu X, Lou D X W. . Adv. Mater., 2022, 34: 2204865,
CrossRef Google scholar
[[17]]
Wang L, Tan H, Zhang L, Cheng B, Yu J. . Chem. Eng. J., 2021, 411: 128501,
CrossRef Google scholar
[[18]]
Tang Z, Zhu F, Zhou J, Chen W, Wang K, Liu M, Wang N, Li N. . Appl. Catal. B-Environ., 2022, 309: 121267,
CrossRef Google scholar
[[19]]
Zhu Q, Xu Q, Du M, Zeng X, Zhong G, Qiu B, Zhang J. . Adv. Mater., 2022, 34: 2202929,
CrossRef Google scholar
[[20]]
Singh A, Wan F, Yadav K, Salvi A, Thakur P, Thakur A. . Inorg. Chem. Commun., 2023, 157: 111425,
CrossRef Google scholar
[[21]]
Lee S, Kim S, Gim J, Alfaruqi M H, Kim S, Mathew V, Sambandam B, Hwang J, Kim J. . Compos. Part B-Eng., 2022, 231: 109548,
CrossRef Google scholar
[[22]]
Kumar S, Fossard F, Amiri G, Chauveau J-M, Sallet V. . Nano Res., 2022, 15: 377,
CrossRef Google scholar
[[23]]
Li Z, Ma T, Zhang J, Wang Z. . Adv. Mater. Interfaces, 2022, 9: 2102497,
CrossRef Google scholar
[[24]]
Jiang J, Wang G, Shao Y, Wang J, Zhou S, Su Y. . Chinese J. Catal., 2022, 43: 329,
CrossRef Google scholar
[[25]]
Ma X, Li D, Liu C, Yang Z, Qi J, Bai L, You F, Yuan F. . J. Photoch. Photobio. A, 2023, 434: 114261,
CrossRef Google scholar
[[26]]
You F, Zhou T, Li J, Huang S, Chang C, Fan X, Zhang H, Ma X, Gao D, Qi J, Li D. . J. Colloid Interf. Sci., 2024, 660: 77,
CrossRef Google scholar
[[27]]
Jiang W, Loh H, Low B Q L, Zhu H, Low J, Heng J Z X, Tang K Y, Li Z, Loh X J, Ye E, Xiong Y. . Appl. Catal B: Environ., 2023, 321: 122079,
CrossRef Google scholar
[[28]]
Luo Z, You L, Wu J, Song Y, Ren S, Jia T, Li X, Chen L, Qi Y, He P. . Chem. Eng. J., 2021, 420: 129843,
CrossRef Google scholar
[[29]]
Wang S, Guan B Y, Lou D X W. . J. Am. Chem. Soc., 2018, 140: 5037,
CrossRef Pubmed Google scholar
[[30]]
Cheng C, Wang J, Zhao Z, Chen C, Cui S, Wang Y, Pan L, Ni Y, Lu C. . J. Alloy Compd., 2022, 896: 163064,
CrossRef Google scholar
[[31]]
Murillo-Sierra J, Maya-Treviño M, Nuñez-Salas R, Pino-Sandoval D, Hernández-Ramírez A. . Ceram. Int., 2022, 48: 13761,
CrossRef Google scholar
[[32]]
Huo Y, Zhang J, Dai K, Liang C. . ACS Appl. Energy Mater., 2021, 4: 956,
CrossRef Google scholar
[[33]]
Chen C, Hu J, Yang X, Yang T, Qu J, Guo C, Li C M. . ACS Appl. Mater. Interfaces, 2021, 13: 20162,
CrossRef Pubmed Google scholar
[[34]]
Zhang J, Wang Y, Wang H, Zhong D, Lu T. . Chinese Chem. Lett., 2022, 33: 2065,
CrossRef Google scholar
[[35]]
Patel M Y, Mortelliti M J, Dempsey J L. . Chem. Phys. Rev., 2022, 3: 011303,
CrossRef Google scholar
[[36]]
Luo L, Gong Z, Ma J, Wang K, Zhu H, Li K, Xiong L, Guo X, Tang J. . Appl. Catal. B: Environ., 2021, 284: 119742,
CrossRef Google scholar
[[37]]
Xu T, Su X, Zhu Y, Khan S, Chen D-L, Guo C, Ning J, Zhong Y, Hu Y. . J. Colloid Interf. Sci., 2023, 629: 1027,
CrossRef Google scholar
[[38]]
Li N, Chen X, Wang J, Liang X, Ma L, Jing X, Chen D-L, Li Z. . ACS Nano, 2022, 16: 3332,
CrossRef Pubmed Google scholar

Accesses

Citations

Detail

Sections
Recommended

/