Nanostructured ZnO/ZnS with Type-II Hetero-junction for Efficient CO2 Photoreduction

Qi Xiao , Ting Liu , Qianhe Zhou , Liangyu Li , Chuntao Chang , Dawei Gao , Danyang Li , Feifei You

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (3) : 484 -489.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (3) : 484 -489. DOI: 10.1007/s40242-024-4022-8
Article

Nanostructured ZnO/ZnS with Type-II Hetero-junction for Efficient CO2 Photoreduction

Author information +
History +
PDF

Abstract

Photocatalytic CO2 reduction driven by solar light is a green approach that can decrease the greenhouse effect induced by high CO2 concentration in the atmosphere and generate carbon-based chemicals/fuels as well. In this paper, non-metal co-catalysts ZnO/ZnS type-II hetero-junction nanoparticles with a rough surface were prepared through a hydrothermal process. When used as a photocatalyst for CO2 reduction, the optimal one showed good cycle stability and a higher yield rate of 27.8 µmol·g−1·h−1 for CO2 conversion into CO. The outstanding catalytic activity originated from i) the rich interfaces between ZnO and ZnS in the nanoscale could significantly reduce the delivery path of carriers and improve the utilization efficiency of photo-excited electron/hole pairs and ii) enriched surface oxygen defects could supply much more reaction active sites for CO2 adsorption.

Keywords

ZnO/ZnS / Photocatalytic / CO2 reduction / Oxygen defect

Cite this article

Download citation ▾
Qi Xiao, Ting Liu, Qianhe Zhou, Liangyu Li, Chuntao Chang, Dawei Gao, Danyang Li, Feifei You. Nanostructured ZnO/ZnS with Type-II Hetero-junction for Efficient CO2 Photoreduction. Chemical Research in Chinese Universities, 2024, 40(3): 484-489 DOI:10.1007/s40242-024-4022-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Overa S, Ko B H, Zhao Y, Jiao F. Acc. Chem. Res., 2022, 55: 638.

[2]

Qiu L-Q, Li H-R, He L-N. Acc. Chem. Res., 2023, 56: 2225.

[3]

Fang S, Rahaman M, Bharti J, Reisner E, Robert M, Ozin G A, Hu Y H. Nat. Rev. Method Prime., 2023, 3: 61.

[4]

Lu M, Zhang M, Liu J, Chen Y, Liao J P, Yang M Y, Cai Y P, Li S L, Lan Y Q. Angew. Chem. Int. Ed., 2022, 61: e202200003.

[5]

Wei Y, You F, Zhao D, Wan J, Gu L, Wang D. Angew. Chem. Int. Ed., 2022, 61: e202212049.

[6]

Zou L, Sa R, Zhong H, Lv H, Wang X, Wang R. ACS Catal., 2022, 12: 3550.

[7]

Wang T, Chen L, Chen C, Huang M, Huang Y, Liu S, Li B. ACS Nano, 2022, 16: 2306.

[8]

Wang J, Shi Y, Wang Y, Li Z. ACS Energy Lett., 2022, 7: 2043.

[9]

Xue L, Zhang C, Shi T, Liu S, Zhang H, Sun M, Liu F, Liu Y, Wang Y, Gu X. Chem. Eng. J., 2023, 452: 139701.

[10]

Zhang Y, Xu M, Zhou W, Song X, Liu X, Zhang J, Chen S, Huo P. J. Colloid Interf. Sci., 2023, 650: 1762.

[11]

Li Q, Gao Y, Zhang M, Gao H, Chen J, Jia H. Appl. Catal. B-Environ., 2022, 303: 120905.

[12]

Ma X, Li D, Jin H, Zeng X, Qi J, Yang Z, You F, Yuan F. J. Colloid Interf. Sci., 2023, 648: 1025.

[13]

Han C, Zhang X, Huang S, Hu Y, Yang Z, Li T T, Li Q, Qian J. Adv. Sci., 2023, 10: 2300797.

[14]

Ma X, Li D, Jiang Y, Jin H, Bai L, Qi J, You F, Yuan F. J. Colloid Interf. Sci., 2022, 628: 768.

[15]

Xue L, Zhang C, Wu J, Fan Q-Y, Liu Y, Wu Y, Li J, Zhang H, Liu F, Zeng S. Appl. Catal. B-Environ., 2022, 304: 120951.

[16]

Wang Y, Fan G, Wang S, Li Y, Guo Y, Luan D, Gu X, Lou D X W. Adv. Mater., 2022, 34: 2204865.

[17]

Wang L, Tan H, Zhang L, Cheng B, Yu J. Chem. Eng. J., 2021, 411: 128501.

[18]

Tang Z, Zhu F, Zhou J, Chen W, Wang K, Liu M, Wang N, Li N. Appl. Catal. B-Environ., 2022, 309: 121267.

[19]

Zhu Q, Xu Q, Du M, Zeng X, Zhong G, Qiu B, Zhang J. Adv. Mater., 2022, 34: 2202929.

[20]

Singh A, Wan F, Yadav K, Salvi A, Thakur P, Thakur A. Inorg. Chem. Commun., 2023, 157: 111425.

[21]

Lee S, Kim S, Gim J, Alfaruqi M H, Kim S, Mathew V, Sambandam B, Hwang J, Kim J. Compos. Part B-Eng., 2022, 231: 109548.

[22]

Kumar S, Fossard F, Amiri G, Chauveau J-M, Sallet V. Nano Res., 2022, 15: 377.

[23]

Li Z, Ma T, Zhang J, Wang Z. Adv. Mater. Interfaces, 2022, 9: 2102497.

[24]

Jiang J, Wang G, Shao Y, Wang J, Zhou S, Su Y. Chinese J. Catal., 2022, 43: 329.

[25]

Ma X, Li D, Liu C, Yang Z, Qi J, Bai L, You F, Yuan F. J. Photoch. Photobio. A, 2023, 434: 114261.

[26]

You F, Zhou T, Li J, Huang S, Chang C, Fan X, Zhang H, Ma X, Gao D, Qi J, Li D. J. Colloid Interf. Sci., 2024, 660: 77.

[27]

Jiang W, Loh H, Low B Q L, Zhu H, Low J, Heng J Z X, Tang K Y, Li Z, Loh X J, Ye E, Xiong Y. Appl. Catal B: Environ., 2023, 321: 122079.

[28]

Luo Z, You L, Wu J, Song Y, Ren S, Jia T, Li X, Chen L, Qi Y, He P. Chem. Eng. J., 2021, 420: 129843.

[29]

Wang S, Guan B Y, Lou D X W. J. Am. Chem. Soc., 2018, 140: 5037.

[30]

Cheng C, Wang J, Zhao Z, Chen C, Cui S, Wang Y, Pan L, Ni Y, Lu C. J. Alloy Compd., 2022, 896: 163064.

[31]

Murillo-Sierra J, Maya-Treviño M, Nuñez-Salas R, Pino-Sandoval D, Hernández-Ramírez A. Ceram. Int., 2022, 48: 13761.

[32]

Huo Y, Zhang J, Dai K, Liang C. ACS Appl. Energy Mater., 2021, 4: 956.

[33]

Chen C, Hu J, Yang X, Yang T, Qu J, Guo C, Li C M. ACS Appl. Mater. Interfaces, 2021, 13: 20162.

[34]

Zhang J, Wang Y, Wang H, Zhong D, Lu T. Chinese Chem. Lett., 2022, 33: 2065.

[35]

Patel M Y, Mortelliti M J, Dempsey J L. Chem. Phys. Rev., 2022, 3: 011303.

[36]

Luo L, Gong Z, Ma J, Wang K, Zhu H, Li K, Xiong L, Guo X, Tang J. Appl. Catal. B: Environ., 2021, 284: 119742.

[37]

Xu T, Su X, Zhu Y, Khan S, Chen D-L, Guo C, Ning J, Zhong Y, Hu Y. J. Colloid Interf. Sci., 2023, 629: 1027.

[38]

Li N, Chen X, Wang J, Liang X, Ma L, Jing X, Chen D-L, Li Z. ACS Nano, 2022, 16: 3332.

AI Summary AI Mindmap
PDF

225

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/