Prussian Blue Analogue Derived N-Doped Graphitic Carbon Wrapped Iron-Cobalt Nanoparticles as Recyclable Heterogeneous Catalysts for Friedel-Crafts Acylation

Zhenyu Lei , Honglei Sun , Zhehan Dong , Shuaishuai Sun , Chongyao Bi , Junling Zhan , Lin Wu , Mingjun Jia

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (6) : 1116 -1126.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (6) : 1116 -1126. DOI: 10.1007/s40242-024-4020-x
Article

Prussian Blue Analogue Derived N-Doped Graphitic Carbon Wrapped Iron-Cobalt Nanoparticles as Recyclable Heterogeneous Catalysts for Friedel-Crafts Acylation

Author information +
History +
PDF

Abstract

The rational design of efficient heterogeneous catalysts for Friedel-Crafts acylation reactions is highly desirable for meeting the need for the industrial production of various aromatic ketone compounds and biomass-derived chemicals. Herein, we reported that graphitic carbon wrapped FeCo bimetallic nanoparticles confined in nitrogen-doped carbon nanotubes, which were prepared by pyrolysis of FeCo-based Prussian blue analogue and melamine via a two-stage programmed heating procedure, exhibited excellent catalytic activity and recyclability for the acylation of aromatic compounds with acyl chlorides. The oxidized bimetallic species embedded in the external graphitic carbon shell should be the main active sites for the acylation reaction. The graphitic carbon shell and the carbon nanotube could provide effective protection on the active metal species against leaching through multiple interactions, leading to the formation of a highly active and durable heterogeneous catalyst for the acylation reaction.

Keywords

Prussian blue analogue / N-Doped carbon material / Pyrolysis / Bimetallic nanoparticle / Friedel-Crafts acylation

Cite this article

Download citation ▾
Zhenyu Lei, Honglei Sun, Zhehan Dong, Shuaishuai Sun, Chongyao Bi, Junling Zhan, Lin Wu, Mingjun Jia. Prussian Blue Analogue Derived N-Doped Graphitic Carbon Wrapped Iron-Cobalt Nanoparticles as Recyclable Heterogeneous Catalysts for Friedel-Crafts Acylation. Chemical Research in Chinese Universities, 2024, 40(6): 1116-1126 DOI:10.1007/s40242-024-4020-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sartori G, Maggi R. Chemical Reviews, 2011, 111: PR181

[2]

Chalotra N, Sultan S, Shah B A. Asian J. Org. Chem., 2020, 9: 863

[3]

Alalq I, Nguyen-Phu H, Crossley S. J. Catal., 2023, 426: 222

[4]

Bejblová M, Procházková D, Cejka J. ChemSusChem, 2009, 2: 486

[5]

Gao G F, Zhao Q, Yang C, Jiang T S. Dalton Trans., 2021, 50: 5871

[6]

Hu W H, Liu M N, Luo Q X, Zhang J B, Chen H Y, Xu L, Sun M, Ma X X, Hao Q Q. Chem. Eng. J., 2023, 466: 11

[7]

Tiwari M S, Yadav G D. Chem. Eng. J., 2015, 266: 64

[8]

Lu H Y, Xie J, Wu X J, Ma Q L, Cheng J N, Li Z L, Hu D C. Appl. Catal. A: Gen., 2022, 648: 7

[9]

Deka R C, Deka A, Deka P, Saikia S, Baruah J, Sarma P J. J. Nanosci. Nanotechnol., 2020, 20: 5153

[10]

Ammar M, Jiang S, Ji S F. J. Solid State Chem., 2016, 233: 303

[11]

Schiaroli N, Allegri A, Eberle M, Billi S, Guerrini A, Albonetti S, Vaccari A, Tabanelli T, Lucarelli C. ChemSusChem, 2023, 16: 11

[12]

Ly I, Layan E, Picheau E, Chanut N, Nallet F, Bentaleb A, Dourges M A, Pellenq R J, Hillard E A. ACS Appl. Mater. Interfaces, 2022, 14: 13305

[13]

Mu M M, Chen L G, Liu Y L, Fang W W, Li Y. RSC Adv., 2014, 4: 36951

[14]

Li S, Jin C H, Feng N D, Deng F, Xiao L P, Fan J. Catal. Commun., 2019, 123: 54

[15]

Reddy K R, Venkanna D, Kantam M L, Bhargava S K, Srinivasu P. Ind. Eng. Chem. Res., 2015, 54: 7005

[16]

Fang Z, He W, Tu T, Lv N N, Qiu C H, Li X, Zhu N, Wan L, Guo K. Chem. Eng. J., 2018, 331: 443

[17]

Chen Y Q, Yang Y, Zhou Z, Luo W, Liu J H, Wang F. New J. Chem., 2020, 44: 10492

[18]

Vardon A, Layan E, Louërat F, Nallet F, Bentaleb A, Dourges M A, Toupance T, Laurichesse E, Sanchez C, Parizel N, Sidhoum C, Baaziz W, Ersen O, Pigot T, Backov R. Chem. Mat., 2023, 35: 6502

[19]

Zhang H, Song X J, Zhao C, Hu D W, Zhang W X, Jia M J. ACS Appl. Nano Mater., 2020, 3: 6664

[20]

Zhang H, Song X J, Sun H, Lei Z Y, Bao S X, Zhao C, Hu D A W, Zhang W X, Liu J Y, Jia M J. Catal. Sci. Technol., 2021, 11: 7943

[21]

Zhao C, Zhang H, Lei Z Y, Miao S S, Sun H L, Sun Y T, Zhang W X, Jia M J. Catal. Today, 2022, 402: 220

[22]

Yang Y, Lun Z Y, Xia G L, Zheng F C, He M N, Chen Q W. Energy Environ. Sci., 2015, 8: 3563

[23]

Su J W, Yang Y, Xia G L, Chen J T, Jiang P, Chen Q W. Nat. Commun., 2017, 8: 10

[24]

Yang L J, Feng S Z, Xu G C, Wei B, Zhang L. ACS Sustain. Chem. Eng., 2019, 7: 5462

[25]

Chen S M, Ma L T, Wu S L, Wang S Y, Li Z B, Emmanuel A A, Huqe M R, Zhi C Y, Zapien J A. Adv. Funct. Mater., 2020, 30: 9

[26]

Wang Z, Fang Y, Yang Y, Qiu B, Li H P. Chem. Eng. J., 2023, 454: 15

[27]

Goda E S, Lee S, Sohail M, Yoon K R. J. Energy Chem., 2020, 50: 206

[28]

Niu H J, Chen Y P, Sun R M, Wang A J, Mei L P, Zhang L, Feng J J. J. Power Sources, 2020, 480: 11

[29]

Chen D, Li G F, Chen X, Li C J, Zhang Y C, Hu J, Yu J H, Yu L Y, Dong L F. J. Alloy. Compd., 2022, 910: 10

[30]

Wang Z, Ang J M, Zhang B W, Zhang Y F, Ma X Y D, Yan T, Liu J, Che B Y, Huang Y Z, Lu X H. Appl. Catal. B: Environ., 2019, 254: 26

[31]

Xie D Y, Yu D S, Hao Y A, Han S L, Li G H, Wu X L, Hu F, Li L L, Chen H Y, Liao Y F, Peng S J. Small, 2021, 17: 11

[32]

Xu X Q, Xie J H, Liu B, Wang R Y, Liu M Y, Zhang J, Liu J, Cai Z, Zou J L. Appl. Catal. B: Environ., 2022, 316: 12

[33]

Feng Y, Han H, Kim K M, Dutta S, Song T. J. Catal., 2019, 369: 168

[34]

Hu L, Zhang R R, Wei L Z, Zhang F P, Chen Q W. Nanoscale, 2015, 7: 450

[35]

Uemura T, Kitagawa S. J. Am. Chem. Soc., 2003, 125: 7814

[36]

Ge Y C, Dong P, Craig S R, Ajayan P M, Ye M X, Shen J F. Adv. Energy Mater., 2018, 8: 9

[37]

Zhu Z G, Xu Q Q, Ni Z T, Luo K F, Liu Y Y, Yuan D S. Chem. Eng., 2021, 9: 13491

[38]

Yang W X, Liu X J, Yue X Y, Jia J B, Guo S J. J. Am. Chem. Soc., 2015, 137: 1436

[39]

Wu S K, Shen X P, Zhu G X, Zhou E, Ji Z Y, Ma L B, Xu K Q, Yang J, Yuan A H. Carbon, 2017, 116: 68

[40]

Gong Y, Pan J, Zhang L L, Wang X, Song S Y, Zhang HY. Chem. Res. Chinese Universities, 2022, 38: 1287

[41]

Ferrari A C, Basko D M. Nat. Nanotechnol., 2013, 8: 235

[42]

Zheng F C, Yang Y, Chen Q W. Nat. Commun., 2014, 5: 10

[43]

Zhang Z Q, Wang H B, Li Y X, Xie M G, Li C G, Lu H Y, Peng Y, Shi Z. Chem. Res. Chinese Universities, 2022, 38: 750

[44]

Sun F Z, Wang G, Ding Y Q, Wang C, Yuan B B, Lin Y Q. Adv. Energy Mater., 2018, 8: 11

[45]

Wei K L, Wang X, Jiao X L, Li C, Chen D R. Appl. Surf. Sci., 2021, 550: 10

[46]

Song C S, Wu S K, Shen X P, Miao X L, Ji Z Y, Yuan A H, Xu K Q, Liu M M, Xie X L, Kong L R, Zhu G X, Shah S A. J. Colloid Interface Sci., 2018, 524: 93

[47]

Wang J, Wei Z Z, Gong Y T, Wang S P, Su D F, Han C L, Li H R, Wang Y. Chem. Commun., 2015, 51: 12859

[48]

Wang S G, Qin J W, Meng T, Cao M H. Nano Energy, 2017, 39: 626

[49]

Chen L, Zuo S Y, Guan Z Y, Xu H M, Xia D S, Li D Y. Res. Chem. Intermed., 2021, 47: 795

[50]

Long J Y, Yan Z S, Gong Y, Lin J H. Appl. Surf. Sci., 2018, 448: 50

[51]

Iglesias D, Melchionna M. Catalysts, 2019, 9: 128

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/