Electrocatalytic Hydrogen Evolution by Binuclear Metal (M=Co, Fe, Mn) Xanthine Bridged Bis-corrole

Shiyin Xu , Jinghe Cen , Gang Yang , Liping Si , Xinyan Xiao , Haiyang Liu

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (6) : 1106 -1115.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (6) : 1106 -1115. DOI: 10.1007/s40242-024-4013-9
Article

Electrocatalytic Hydrogen Evolution by Binuclear Metal (M=Co, Fe, Mn) Xanthine Bridged Bis-corrole

Author information +
History +
PDF

Abstract

Three binuclear metal (M=Co, Fe, Mn) xanthine bridged bis-corrole complexes were synthesized and investigated as electrocatalysts for the hydrogen evolution reaction (HER). All the prepared metal bis-corrole catalysts exhibited good HER performance when using acetic acid (AcOH), trifluoroacetic acid (TFA) and p-toluenesulfonic acid (TsOH) as proton sources. The catalytic HER activities followed an order of Co bis-corrole (1)> Fe bis-corrole (2)> Mn bis-corrole (3) and complex 1 exhibited a significantly lower overpotential at −270 mV (in TsOH). Furthermore, complex 1 may go EECC and EECEC pathways in organic solvents (E: electron transfer step, C: proton coupling) and exhibit an HER activity with a turnover frequency (TOF) of 85 h−1 and a Faraday efficiency of 94% when using water as proton source.

Keywords

Electrocatalysis / Bis-corrole / Hydrogen evolution reaction / Transition metal

Cite this article

Download citation ▾
Shiyin Xu, Jinghe Cen, Gang Yang, Liping Si, Xinyan Xiao, Haiyang Liu. Electrocatalytic Hydrogen Evolution by Binuclear Metal (M=Co, Fe, Mn) Xanthine Bridged Bis-corrole. Chemical Research in Chinese Universities, 2024, 40(6): 1106-1115 DOI:10.1007/s40242-024-4013-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Nørskov J K, Jaramillo T F. Science, 2017, 355: eaad4998

[2]

Zhang W, Lai W, Cao R. Chem. Rev., 2017, 117: 3717

[3]

Liu T, DuBois D L, Bullock R M. Nat. Chem., 2013, 5: 228

[4]

Li X, Lv B, Zhang X P, Jin X, Guo K, Zhou D, Bian H, Zhang W, Apfel U P, Cao R. Angew. Chem. Int. Ed., 2022, 61: e202114310

[5]

Zhu W, Li L, Wang Y, Mack J, Dingiswayo S, Nyokong T, Liang X. Dyes Pigments, 2022, 199: 110046

[6]

Xu X, Zhao Y, Yang G, Si L-P, Zhang H, Liu H Y. Int. J. Hydrog. Energy, 2022, 47: 19062

[7]

Chen Q C, Fite S, Fridman N, Tumanskii B, Mahammed A, Gross Z. ACS Catal., 2022, 12: 4310

[8]

Akyüz D, Dinçer H, Özkaya A R, Koca A. Int. J. Hydrog. Energy, 2015, 40: 12973

[9]

Kousar N, Giddaerappa, Sannegowda L K. Int. J. Hydrog. Energy, 2024, 50: 37

[10]

Özçeşmeci İ, Demir A, Akyüz D, Koca A, Gül A. Inorganica Chim. Acta, 2017, 466: 591

[11]

McCrory C C L, Uyeda C, Peters J C. J. Am. Chem. Soc., 2012, 134: 3164

[12]

Wang C L, Liu W X, Zhan S Z. Polyhedron, 2020, 192: 114863

[13]

Khnayzer R S, Thoi V S, Nippe M, King A E, Jurss J W, Roz K A E, Long J R, Chang C J, Castellano F N. Energy Environ. Sci., 2014, 7: 1477

[14]

Roubelakis M M, Bediako D K, Dogutan D K, Nocera D G. Energy Environ. Sci., 2012, 5: 7737

[15]

Wang Y, Zhang M, Liu Y, Zheng Z, Liu B, Chen M, Guan G, Yan K. Adv. Sci., 2023, 10: 2207519

[16]

Kasemthaveechok S, Fabre B, Loget G, Gramage-Doria R. Catal. Sci. Technol., 2019, 9: 1301

[17]

Zhong Y Q, Hossain Md S, Chen Y, Fan Q H, Zhan S Z, Liu H Y. Transit. Met. Chem., 2019, 44: 399

[18]

Yuan S, Cui L, He X, Zhang W, Asefa T. Int. J. Hydrog. Energy, 2020, 45: 28860

[19]

Zhang Q, Lei H, Guo H, Wang Y, Gao Y, Zhang W, Cao R. ChemSusChem, 2022, 15: e202200086

[20]

Liang Z, Guo H, Lei H, Cao R. Chin. Chem. Lett., 2022, 33: 3999

[21]

Mondal B, Sengupta K, Rana A, Mahammed A, Botoshansky M, Dey S G, Gross Z, Dey A. Inorg. Chem., 2013, 52: 3381

[22]

Liang X, Niu Y, Zhang Q, Mack J, Yi X, Hlatshwayo Z, Nyokong T, Li M, Zhu W. Dalton Trans., 2017, 46: 6912

[23]

Li X, Lei H, Guo X, Zhao X, Ding S, Gao X, Zhang W, Cao R. ChemSusChem, 2017, 10: 4632

[24]

Xie L, Tian J, Ouyang Y, Guo X, Zhang W, Apfel U, Zhang W, Cao R. Angew. Chem. Int. Ed., 2020, 59: 15844

[25]

Huang G, Wagner T, Wodrich M D, Ataka K, Bill E, Ermler U, Hu X, Shima S. Nat. Catal., 2019, 2: 537

[26]

Chandra S, Hazari A S, Song Q, Hunger D, Neuman Nicolás I, Slageren J V, Klemm E, Sarkar B. ChemSusChem, 2023, 16: e202201146

[27]

Khusnutdinova D, Wadsworth B L, Flores M, Beiler A M, Reyes Cruz E A, Zenkov Y, Moore G F. ACS Catal., 2018, 8: 9888

[28]

Jökel J, Schwer F, Delius M, von Apfel U-P. Chem. Commun., 2020, 56: 14179

[29]

Broussard M E, Juma B, Train S G, Peng W-J, Laneman S A, Stanley G G. Science, 1993, 260: 1784

[30]

Tang Y, Li M N, Huang Z Y, Liu H Y, Xiao X Y, Zhang S Q. Asian J. Org. Chem., 2022, 11: e202200349

[31]

Besenyei G, Bitter I, Párkányi L, Szalontai G, Baranyai P, Kunsági-Máté É, Faigl F, Grün A, Kubinyi M. Polyhedron, 2013, 55: 57

[32]

Liu Z Y, Lai J W, Yang G, Ren B-P, Lv Z Y, Si L P, Zhang H, Liu H-Y. Catal. Sci. Technol., 2022, 12: 5125

[33]

Lv Z-Y, Yang G, Ren B-P, Liu Z Y, Zhang H, Si L P, Liu H Y, Chang C-K. Eur. J. Inorg. Chem., 2023, 26: e202200755

[34]

Peng W Y, Lan J, Zhu Z M, Si L P, Zhang H, Zhan S Z, Liu H Y. Inorg. Chem. Commun., 2022, 140: 109453

[35]

Chen Y, Fan Q H, Hossain M S, Zhan S Z, Liu H Y, Si L P. Eur. J. Inorg. Chem., 2020, 2020: 491

[36]

Ganguly S, Conradie J, Bendix J, Gagnon K J, McCormick L J, Ghosh A. J. Phys. Chem. A, 2017, 121: 9589

[37]

Lei H, Han A, Li F, Zhang M, Han Y, Du P, Lai W, Cao R. Phys. Chem. Chem. Phys., 2014, 16: 1883

[38]

Paolesse R, Licoccia S, Bandoli G, Dolmella A, Boschi T. Inorg. Chem., 1994, 33: 1171

[39]

Wan B, Cheng F, Lan J, Zhao Y, Yang G, Sun Y-M, Si L-P, Liu H-Y. Int. J. Hydrog. Energy, 2023, 48: 5506

[40]

Cummins D C, Alvarado J G, Zaragoza J P T, Effendy Mubarak M Q, Lin Y-T, de Visser S P, Goldberg D P. Inorg. Chem., 2020, 59: 16053

[41]

Gao B, Ou Z, Chen X, Huang S, Li B, Fang Y, Kadish K M. J. Porphyr. Phthalocyanines, 2014, 18: 1131

[42]

Felton G A N, Glass R S, Lichtenberger D L, Evans D H. Inorg. Chem., 2006, 45: 9181

[43]

Fang J J, Lan J, Yang G, Yuan G Q, Liu H Y, Si L P. New J. Chem., 2021, 45: 5127

[44]

Bediako D K, Solis B H, Dogutan D K, Roubelakis M M, Maher A G, Lee C H, Chambers M B, Hammes-Schiffer S, Nocera D G. Proc. Natl. Acad. Sci., 2014, 111: 15001

[45]

Yang G, Cen J H, Lan J, Li M Y, Zhan X, Yuan G Q, Liu H Y. ChemSusChem, 2022, 15: e202201553

[46]

Wang N, Lei H, Zhang Z, Li J, Zhang W, Cao R. Chem. Sci., 2019, 10: 2308

[47]

Lee J L, Biswas S, Sun C, Ziller J W, Hendrich M P, Borovik A S. J. Am. Chem. Soc., 2022, 144: 4559

[48]

Singha A, Mittra K, Dey A. Dalton Trans., 2019, 48: 7179

[49]

Cheng X M, Liu Zh Y, Fang J J, Yam F, Liu H Y, Xiao X Y, Chang C-K. Russ. J. Gen. Chem., 2021, 91: 1147

[50]

Ahmad E, Rai S, Padhi S K. Int. J. Hydrog. Energy, 2019, 44: 16467

[51]

Lei H, Fang H, Han Y, Lai W, Fu X, Cao R. ACS Catal., 2015, 5: 5145

[52]

Kumar A, Fite S, Raslin A, Kumar S, Mizrahi A, Mahammed A, Gross Z. ACS Catal., 2023, 13: 13344

[53]

Liang Y Y, Li M Y, Shi L, Lin D-Z, Zhan S-Z, Liu H Y. J. Coord. Chem., 2021, 74: 1414

[54]

Wu Z Y, Xue H, Wang T, Guo Y, Meng Y S, Li X, Zheng J, Brückner C, Rao G, Britt R D, Zhang J L. ACS Catal., 2020, 10: 2177

[55]

Chaturvedi A, McCarver G A, Sinha S, Hix E G, Vogiatzis K D, Jiang J. Angew. Chem. Int. Ed., 2022, 61: e202206325

[56]

Lin H, Hossain M S, Zhan S Z, Liu H Y, Si L P. Appl. Organomet. Chem., 2020, 34: e5583

[57]

Wang A, Cheng L, Zhao W, Shen X, Zhu W. J. Colloid Interface Sci., 2020, 579: 598

[58]

Zhang D X, Yuan H Q, Wang H H, Ali A, Wen W H, Xie A N, Zhan S Z, Liu H Y. Transit. Met. Chem., 2017, 42: 773

[59]

Qi X W, Yang G, Guo X S, Si L P, Zhang H, Liu H Y. Eur. J. Inorg. Chem., 2023, 26: e202200613

[60]

Ren B P, Yang G, Lv Z Y, Liu Z Y, Zhang H, Si L P, Liu H Y. Inorg. Chem. Commun., 2023, 152: 110663

AI Summary AI Mindmap
PDF

250

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/