ZIF-8/MS Hybrid Sponge via Secondary Growth for Efficient Removal of Pb(II) and Cu(II)

Hang Bian , Peng Li , Yu Ma , Lin Liu , Dong Li , Ning Zhang

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (6) : 1088 -1095.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (6) : 1088 -1095. DOI: 10.1007/s40242-024-4009-5
Article

ZIF-8/MS Hybrid Sponge via Secondary Growth for Efficient Removal of Pb(II) and Cu(II)

Author information +
History +
PDF

Abstract

In recent years, the surge in industrialization and urbanization has led to the release of a significant amount of heavy metal ions into water. These ions, when present in drinking water, can enter the human body and cause irreversible health problem. Metal-organic frameworks (MOFs) have drawn considerable attention for their outstanding ability to remove these heavy metal ions. However, MOF powders tend to aggregate in water, reducing their adsorption efficiency and potentially leading to secondary environmental pollution. In this regard, the development of MOF composites that are highly adsorptive, recyclable, and maintain stable dispensability in water is crucial for heavy metal ions removal. Herein, the in situ growth of zeolitic imidazolate framework (ZIF-8) on melamine sponge (MS) using a secondary growth method is reported. The resultant composite sponges exhibit high efficiency in adsorbing Pb(II) and Cu(II) from water and maintain good reusability. These findings offer a promising method in efficiently eliminating Pb(II) and Cu(II) from aqueous solutions.

Keywords

Metal-organic framework / Pb(II) adsorption / Cu(II) adsorption / Secondary growth / Composite sponge

Cite this article

Download citation ▾
Hang Bian, Peng Li, Yu Ma, Lin Liu, Dong Li, Ning Zhang. ZIF-8/MS Hybrid Sponge via Secondary Growth for Efficient Removal of Pb(II) and Cu(II). Chemical Research in Chinese Universities, 2024, 40(6): 1088-1095 DOI:10.1007/s40242-024-4009-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lin G, Zeng B, Li J, Wang Z, Wang S X, Hu T, Zhang L B. Chem. Eng. J., 2023, 460: 141710

[2]

Chen Q Y, Yao Y, Li X Y, Lu J, Zhou J, Huang Z L. J. Water Process. Eng., 2018, 26: 289

[3]

Koliehova A, Trokhymenko H, Svitlana M, Gomelya M. J. Ecol. Eng., 2019, 20: 146

[4]

Ma Y, You D Y, Yu F, Luo J, Pan Q H, Lin Y L, Wang F, Yang W T. Sep. Purif. Technol., 2022, 294: 121223

[5]

Xiang H R, Min X B, Tang C J, Sillanpaa M, Zhao F P. J. Water Process. Eng., 2022, 49: 103023

[6]

Wang Z W, Tan Z X, Li H, Yuan S G, Zhang Y, Dong Y F. J. Clean. Prod., 2022, 339: 130746

[7]

Feng J Y, Zhang J, Song W F, Liu J G, Hu Z C, Bao B Q. Ecotoxicol. Environ. Saf., 2020, 203: 111002

[8]

Nekouei R K, Pahlevani F, Assefi M, Maroufi S, Sahajwalla V. J. Hazard. Mater., 2019, 371: 389

[9]

Kakom S M, Abdelmonem N M, Ismail I M, Refaat A A. Sugar Tech., 2023, 25: 619

[10]

Zhu D R, He Y, Zhang B Q, Zhang N, Lei Z F, Zhang Z Y, Chen G Y, Shimizu K. J. Environ. Chem. Eng., 2021, 9: 105792

[11]

Ceglowski M, Gierczyk B, Frankowski M, Popenda L. React. Funct. Polym., 2018, 131: 64

[12]

Xu G R, An Z H, Xu K, Liu Q, Das R, Zhao H L. Coord. Chem. Rev., 2021, 427: 213554

[13]

Wu G G, Ma J P, Li S, Li J H, Wang X Y, Zhang Z Y, Chen L X. J. Mater. Chem. A, 2023, 11: 6747

[14]

Mo Z L, Tai D Z, Zhang H, Shahab A. Chem. Eng. J., 2022, 443: 136320

[15]

Liu Y, Pang H W, Wang X X, Yu S J, Chen Z S, Zhang P, Chen L, Song G, Alharbi N S, Rabah S O, Wang X K. Chem. Eng. J., 2021, 406: 127139

[16]

Liu L J, Ma Y, Yang W, Chen C, Li M L, Lin D Y, Pan Q H. New J. Chem., 2020, 44: 15459

[17]

Zhao R, Ma T T, Zhao S, Rong H Z, Tian Y Y, Zhu G S. Chem. Eng. J., 2020, 382: 122893

[18]

Duan C Y, Xie Y M, Ding M L, Feng Y, Yao J F. J. CO2 Util., 2022, 64: 102158

[19]

Feng X F, Long R X, Wang L L, Liu C C, Bai Z X, Liu X B. Sep. Purif. Technol., 2022, 284: 120099

[20]

Kim G, Yea Y, Njaramba L K, Yoon Y, Kim S, Park C M. Environ. Res., 2022, 212: 113419

[21]

Mo Z L, Tai D Z, Zhang H, Shahab A. Chem. Eng. J., 2022, 443: 136320

[22]

Yang W, Cao M G. Sep. Purif. Technol., 2023, 309: 122957

[23]

Zhou L, Li N, Owens G, Chen Z L. Chem. Eng. J., 2019, 362: 628

[24]

Guo Z Q, Hou H, Zhou J, Wu X M, Li Y, Hu L L. J. Environ. Chem. Eng., 2023, 11: 110446

[25]

Luo M N, Zhu C M, Chen Q M, Song F, Hao W D, Shen Z T, Konhauser K O, Alessi D S, Zhong C. Colloids Surf. A Physicochem. Eng. Asp., 2023, 657: 130504

[26]

Bahmani E, Koushkbaghi S, Darabi M, ZabihSahebi A, Askari A, Irani M. Carbohydr. Polym., 2019, 224: 115148

[27]

Jiang X, Su S, Rao J T, Li S J, Lei T, Bai H P, Wang S X. J. Environ. Chem. Eng., 2021, 9: 105959

[28]

Li M, Luo J W, Lu J J, Shang W T, Mu J L, Sun F Y, Dong Z J, Li X Y. Chemosphere, 2022, 304: 135285

[29]

Wang C L, Sun Q, Zhang L X, Su T, Yang Y Z. J. Environ. Chem. Eng., 2022, 10: 107911

[30]

Jiao L H, Feng H X, Chen N. J. Chem., 2023, 2023: 7182712

[31]

Wang M, Shao L P, Jia M Y. Cellulose, 2022, 29: 8243

[32]

Li R F, Lan G H, Liu Y Q, Qiu H Y, Ding X F, Xu B, Deng C P. Sep. Purif. Technol., 2022, 291: 120851

[33]

Jiang S Y, Li S, Zhang P B, Miao H Y, Jiang P P, Leng Y. J. Environ. Chem. Eng., 2022, 10: 108670

[34]

Feng Y, Wang Y Y, Wang Y Q, Zhang X F, Yao J F. J. Colloid Interface Sci., 2018, 512: 7

[35]

Lv X F, Zhang Y S, Wang X D, Hu L B, Shi C H. Nanomaterials, 2022, 12: 3162

[36]

Ji C H, Zhang J Y, Jia R X, Zhang W M, Lv L, Pan B C. Chem. Eng. J., 2021, 414: 128812

[37]

Wang X W, Cao Z Q, Du B, Zhang Y, Zhang R B. Compos. B: Eng., 2020, 183: 107685

AI Summary AI Mindmap
PDF

218

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/