CNTs-promoted Co-Cu Catalyst for Efficient Synthesis of Cinnamyl Alcohol from Hydrogenation of Cinnamaldehyde

Xin Dong , Cheng Liu , Zhaohui Zhou

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (6) : 1082 -1087.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (6) : 1082 -1087. DOI: 10.1007/s40242-024-4007-7
Article

CNTs-promoted Co-Cu Catalyst for Efficient Synthesis of Cinnamyl Alcohol from Hydrogenation of Cinnamaldehyde

Author information +
History +
PDF

Abstract

With types of in-house-synthesized multi-walled carbon nanotubes (CNTs), highly active CNT-promoted Co-Cu catalysts, symbolized as Co iCu j-x%CNTs (mass fraction) were prepared by the co-precipitation method from nitrate salts of the corresponding metallic components. Their catalytic performances for the cinnamyl alcohol synthesis from the hydrogenation of cinnamaldehyde were studied and compared with the corresponding CNT-free coprecipitated catalyst of Co iCu j mixed oxide. It was shown that the appropriate incorporation of a minor amount of the CNTs into Co iCu j oxide could significantly increase the catalytic activity for cinnamyl alcohol synthesis. Under the pressure of 5.0 MPa, the highest yield of cinnamyl alcohol reaches 94.4% with selectivity of 98.7% for the catalyst Co2-Cu1-10.0%CNTs. The addition of an appropriate amount of CNT can promote the highly dispersed catalyst and promote the recovery of the catalyst. The results show that carbon nanotube is an excellent accelerator, and its properties for unique hydrogen absorption play important roles in promoting the synthesis of cinnamyl alcohol.

Keywords

Cinnamaldehyde / Cinnamyl alcohol / Carbon nanotube / Co-Cu catalyst

Cite this article

Download citation ▾
Xin Dong, Cheng Liu, Zhaohui Zhou. CNTs-promoted Co-Cu Catalyst for Efficient Synthesis of Cinnamyl Alcohol from Hydrogenation of Cinnamaldehyde. Chemical Research in Chinese Universities, 2024, 40(6): 1082-1087 DOI:10.1007/s40242-024-4007-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lan X, Wang T. ACS Catal., 2020, 10: 2764

[2]

Chen H, Peng T, Liang B, Zhang D, Lian G, Yang C, Zhang Y, Zhao W. Green Chem., 2022, 24: 3655

[3]

Brown H C, Narasimhan S, Choi Y M. J. Org. Chem., 1982, 47: 4702

[4]

Huff C, Dushatinski T, Abdel-Fattah T M. Int. J. Hydrogen Energy, 2017, 42: 18985

[5]

Liu Y C, Wang X C, Zhang C, Xu Q, Dang L, Zhao X, Tan H, Li Y G, Zhao F Y. New J. Chem., 2022, 46: 15950

[6]

Nitta Y, Ueno K, Imanaka T. Appl. Catal., 1989, 56: 9

[7]

Zhang H B, Dong X, Lin G D, Liang X L, Li H Y. Chem. Commun., 2005, 40: 5094

[8]

Ma Y, Feng L, Guo Z, Deng J, Pham H C, Liu Y. Front.Chem., 2019, 7: 751

[9]

Milone C, Ingoglia R, Galvagno S. Gold Bull., 2006, 39: 54

[10]

Xue Y, Yao R, Li J, Wang G, Wu P, Li X. Catal. Sci. Technol., 2017, 7: 6112

[11]

Lashdaf M, Lahtinen J, Lindblad M, Venäläinen T, Krause A O I. Appl. Catal. A: Gen., 2004, 276: 129

[12]

Raj K J A, Prakash M G, Mahalakshmy R, Elangovan T, Viswanathan B. Catal. Sci. Technol., 2012, 2: 1429

[13]

Yuan T, Liu D, Pan Y, Pu X, Xia Y, Wang J, Xiong W. Catal. Lett., 2019, 149: 851

[14]

Chen P, Zhang H B, Lin G D, Hong Q, Tsai K R. Carbon, 1997, 35: 1495

[15]

Lv Y, Han M, Gong W, Wang D, Chen C, Wang G, Zhang H, Zhao H. Angew. Chem. Int. Ed., 2020, 59: 23521

[16]

Oduro W O, Cailuo N, Yu K M K, Yang H, Tsang S C. Phys. Chem. Chem. Phys., 2011, 13: 2590

[17]

Tan Y, Liu X, Zhang L, Liu F, Wang A, Zhang T. Chinese J. Catal, 2021, 42: 470

[18]

Hájek J, Kumar N, Francová D, Paseka I, Mäki-Arvela P, Salmi T, Murzin D Y. Chem. Eng. Technol., 2004, 27: 1290

[19]

Kumar N, Mäki-Arvela P, Hajek J, Salmi T, Murzin D Y, Heikkilä T, Laine E, Laukkanen P, Väyrynen J. Micropor. Mesopor. Mater., 2004, 69: 173

[20]

Liao Z, Lan Y, Wang K, Lei M, Liao Y, Mao H, Ma J, Zhao S. Chem. Res. Chinese Universities, 2018, 34: 285

[21]

Ma J, Lan Y, Mao H, Liao Y, Zhao S. Chem. Res. Chinese Universities, 2017, 33: 660

[22]

Dong X, Zhang H B, Lin G D, Yuan Y Z, Tsai K R. Catal. Lett., 2003, 85: 237

[23]

Li Y, Ji L, Zhou X, Li T, Chen X, Zhang X, Yang F. ChemCatChem, 2021, 13: 3270

[24]

Luo Z, Yin L K, Xiang L, Liu X T, Song Z, Li Y, Zhou L, Luo K, Wu K, Jiang J J. Appl. Surf. Sci., 2021, 564: 150474

[25]

Singh H, Marley-Hines M, Chakravarty S, Nath M. J. Mater. Chem. A, 2022, 10: 6772

[26]

Zhang Y, Zhang H B, Lin G D, Chen P, Yuan Y Z, Tsai K R. Appl. Catal. A: General, 1999, 187: 213

[27]

Ma X M, Lin G D, Zhang H B. Catal. Lett., 2006, 111: 141

[28]

Castillejos E, Jahjah M, Favier I, Orejón A, Pradel C, Teuma E, MasdeuBultó A M, Serp P, Góme M. ChemCatChem, 2012, 4: 118

[29]

Iqbal Z, Khan M S, Khattak R, Iqbal T, Zekker I, Zahoor M, Hetta H F, El-Saber Batiha G, Alshammari E M. Catalysts, 2021, 11: 863

[30]

Stickle W F, Moulder J F. Surf. Sci. Spectra, 1991, 9: 1441

[31]

Zhang H B, Lin G D, Zhou Z H, Dong X, Chen T. Carbon, 2002, 40: 2429

[32]

Zhao B H, Chen J G, Liu X, Liu Z W, Hao Z, Xiao J, Liu Z T. Ind. Eng. Chem. Res., 2012, 51: 11112

[33]

Palmer R E, Willis R F. Surf. Sci., 1987, 179: L1

AI Summary AI Mindmap
PDF

219

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/