Nanomaterial Assisted Exosome Analysis Using Mass Spectrometry

Yi Zhang, Bokai Zhou, Qiuning Li, Mingshi Jin, Yu Bai

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (2) : 237-254. DOI: 10.1007/s40242-024-4004-x
Review

Nanomaterial Assisted Exosome Analysis Using Mass Spectrometry

Author information +
History +

Abstract

Exosomes, extracellular vesicles (EVs) that play crucial roles in biological processes, have emerged as attractive targets for noninvasive disease diagnosis and monitoring. Mass spectrometry (MS) offers high sensitivity, high throughput, and excellent qualification and quantification capacity, which is the ideal approach for exosome analysis. Nanomaterials’ unique physiochemical properties, controllable morphology, and large surface area make them promising in biological sample pretreatment and detection. They contributed diverse functions to the exosome MS analysis, encompassing substrates for exosome isolation and cargos enrichment, matrices for laser desorption/ionization (LDI), read-out signals and supporters for signal amplification strategies, etc. In this review, recent progress in the applications of nanomaterial in the exosome MS analysis was summarized and a comprehensive discussion on the challenges and perspectives was proposed for the development of an advancing analysis approach of exosomes for the accurate diagnosis and monitoring of diseases.

Keywords

Exosome / Nanomaterial / Enrichment / Matrix / Mass spectrometry

Cite this article

Download citation ▾
Yi Zhang, Bokai Zhou, Qiuning Li, Mingshi Jin, Yu Bai. Nanomaterial Assisted Exosome Analysis Using Mass Spectrometry. Chemical Research in Chinese Universities, 2024, 40(2): 237‒254 https://doi.org/10.1007/s40242-024-4004-x

References

[1]
Kalluri R, Le Bleu V S. . Science, 2020, 367: eaau6977,
CrossRef Google scholar
[2]
Chen G, Huang A C, Zhang W, Zhang G, Wu M, Xu W, Yu Z L, Yang J G, Wang B K, Sun H H, Xia H F, Man Q W, Zhong W Q, Antelo L F, Wu B, Xiong X P, Liu X M, Guan L, Li T, Liu S J, Yang R F, Lu Y T, Dong L Y, McGettigan S, Somasundaram R, Radhakrishnan R, Mills G, Lu Y L, Kim J, Chen Y H H, Dong H D, Zhao Y F, Karakousis G C, Mitchell T C, Schuchter L M, Herlyn M, Wherry E J, Xu X W, Guo W. . Nature, 2018, 560: 382,
CrossRef Google scholar
[3]
Costa-Silva B, Aiello N M, Ocean A J, Singh S, Zhang H Y, Thakur B K, Becker A, Hoshino A, Mark M T, Molina H, Xiang J, Zhang T, Theilen T M, Garcia-Santos G, Williams C, Ararso Y, Huang Y J, Rodrigues G, Shen T L, Labori K J, Lothe I M B, Kure E H, Hernandez J, Doussot A, Ebbesen S H, Grandgenett P M, Hollingsworth M A, Jain M, Mallya K, Batra S K, Jarnagin W R, Schwartz R E, Matei I, Peinado H, Stanger B Z, Bromberg J, Lyden D. . Nat. Cell Biol., 2015, 17: 816,
CrossRef Google scholar
[4]
Pitt J M, Kroemer G, Zitvogel L. . J. Clin. Invest., 2016, 126: 1139,
CrossRef Google scholar
[5]
Richards K E, Zeleniak A E, Fishel M L, Wu J, Littlepage L E, Hill R. . Oncogene, 2017, 36: 1770,
CrossRef Google scholar
[6]
Melo S A, Luecke L B, Kahlert C, Fernandez A F, Gammon S T, Kaye J, LeBleu V S, Mittendorf E A, Weitz J, Rahbari N, Reissfelder C, Pilarsky C, Fraga M F, Piwnica-Worms D, Kalluri R. . Nature, 2015, 523: 177,
CrossRef Google scholar
[7]
Pisitkun T, Shen R F, Knepper M A. . Proc. Natl. Acad. Sci. USA, 2004, 101: 13368,
CrossRef Google scholar
[8]
Yenuganti V R, Afroz S, Khan R A, Bharadwaj C, Nabariya D K, Nayak N, Subbiah M, Chintala K, Banerjee S, Reddanna P, Khan N. . J. Nanobiotechnology, 2022, 20: 317,
CrossRef Google scholar
[9]
Sun Y, Liu S, Qiao Z, Shang Z, Xia Z J, Niu X M, Qian L Q, Zhang Y, Fan L Y, Cao C X, Xiao H. . Anal. Chim. Acta, 2017, 982: 84,
CrossRef Google scholar
[10]
Qi H Z, Liu C Y, Long L X, Ren Y, Zhang S S, Chang X D, Qian X M, Jia H H, Zhao J, Sun J J, Hou X, Yuan X B, Kang C S. . ACS Nano, 2016, 10: 3323,
CrossRef Google scholar
[11]
Cheng L S, Hill A F. . Nat. Rev. Drug Discov., 2022, 21: 379,
CrossRef Google scholar
[12]
Chen I H, Xue L, Hsu C C, Paez J S P, Pan L, Andaluz H, Wendt M K, Iliuk A B, Zhu J K, Tao W A. . Proc. Natl. Acad. Sci. USA, 2017, 114: 3175,
CrossRef Google scholar
[13]
Snyder O L, Campbell A W, Christenson L K, Weiss M L. . Jove-J. Vis. Exp., 2021, 177: e63059
[14]
Shao H L, Im H, Castro C M, Breakefield X, Weissleder R, Lee H H. . Chem. Rev., 2018, 118: 1917,
CrossRef Google scholar
[15]
Fang X, Wang Y, Wang S, Liu B. . Mater. Today Bio, 2022, 16: 100371,
CrossRef Google scholar
[16]
Zhang N, Chen H L, Yang C J, Hu X F, Sun N R, Deng C H. . Trends Analyt. Chem., 2022, 153: 116652,
CrossRef Google scholar
[17]
Cheng N, Du D, Wang X X, Liu D, Xu W T, Luo Y B, Lin Y H. . Trends Biotechnol., 2019, 37: 1236,
CrossRef Google scholar
[18]
Li S T, Zhu L Y, Zhu L J, Mei X H, Xu W T. . Biosens. Bioelectron., 2022, 200: 113902,
CrossRef Google scholar
[19]
Qiu G Y, Thakur A, Xu C, Ng S P, Lee Y, Wu C M L. . Adv. Funct. Mater., 2019, 29: 1806761,
CrossRef Google scholar
[20]
Sun Z W, Yang J J, Li H, Wang C X, Fletcher C, Li J, Zhan Y, Du L T, Wang F L, Jiang Y N. . Biomaterials, 2021, 274: 120873,
CrossRef Google scholar
[21]
Liu C C, Xu X N, Li B, Situ B, Pan W L, Hu Y, An T X, Yao S H, Zheng L. . Nano Lett., 2018, 18: 4226,
CrossRef Google scholar
[22]
Stremersch S, Marro M, Pinchasik B E, Baatsen P, Hendrix A, De Smedt S C, Loza-Alvarez P, Skirtach A G, Raemdonck K, Braeckmans K. . Small, 2016, 12: 3292,
CrossRef Google scholar
[23]
Zhu Y D, Pick H, Gasilova N, Li X Y, Lin T E, Laeubli H P, Zippelius A, Ho P C, Girault H H. . Chem, 2019, 5: 1318,
CrossRef Google scholar
[24]
Wang Y N, Zhang K, Huang X D, Qiao L, Liu B H. . Anal. Chem., 2021, 93: 709,
CrossRef Google scholar
[25]
Taylor D D, Shah S. . Methods, 2015, 87: 3,
CrossRef Google scholar
[26]
Han Z, Peng C, Yi J, Wang Y, Liu Q, Yang Y, Long S, Qiao L, Shen Y. . iScience, 2021, 24: 102906,
CrossRef Google scholar
[27]
Ye L B, Neale C, Sljoka A, Lyda B, Pichugin D, Tsuchimura N, Larda S T, Pomes R, Garcia A E, Ernst O P, Sunahara R K, Prosser R S. . Nat. Commun., 2018, 9: 1372,
CrossRef Google scholar
[28]
Li D, Yi J, Han G, Qiao L. . ACS Meas. Sci. Au, 2022, 2: 385,
CrossRef Google scholar
[29]
Chen H L, Huang C W, Wu Y L, Sun N R, Deng C H. . ACS Nano, 2022, 16: 12952,
CrossRef Google scholar
[30]
Zheng H Y, Zhao J D, Wang X T, Yan S H, Chu H M, Gao M X, Zhang X M. . Anal. Chem., 2022, 94: 1831,
CrossRef Google scholar
[31]
Escola J M, Kleijmeer M J, Stoorvogel W, Griffith J M, Yoshie O, Geuze H J. . J. Biol. Chem., 1998, 273: 20121,
CrossRef Google scholar
[32]
Théry C, Regnault A, Garin J, Wolfers J, Zitvogel L, Ricciardi-Castagnoli P, Raposo G, Amigorena S. . J. Cell Biol., 1999, 147: 599,
CrossRef Google scholar
[33]
Gao X, Ran N, Dong X, Zuo B, Yang R, Zhou Q, Moulton H M, Seow Y, Yin H. . Sci. Transl. Med., 2018, 10: eaat0195,
CrossRef Google scholar
[34]
Zhu J H, Zhang J, Ji X H, Tan Z J, Lubman D M. . J. Proteome Res., 2021, 20: 4901,
CrossRef Google scholar
[35]
Moura S L, Martín C G, Martí M, Pividori M I. . Biosens. Bioelectron., 2020, 150: 111882,
CrossRef Google scholar
[36]
Cai S, Luo B, Jiang P P, Zhou X X, Lan F, Yi Q Y, Wu Y. . Nanoscale, 2018, 10: 14280,
CrossRef Google scholar
[37]
Chang M M, Wang Q Q, Qin W S, Shi X Z, Xu G W. . Anal. Chem., 2020, 92: 15497,
CrossRef Google scholar
[38]
Pham Q N, Winter M, Milanova V, Young C, Condina M R, Hoffmann P, Pham N T H, Tung T T, Losic D, Thierry B. . Nanoscale, 2023, 15: 1236,
CrossRef Google scholar
[39]
Mori K, Hirase M, Morishige T, Takano E, Sunayama H, Kitayama Y, Inubushi S, Sasaki R, Yashiro M, Takeuchi T. . Angew. Chem. Int. Ed., 2019, 58: 1612,
CrossRef Google scholar
[40]
Fang X N, Duan Y K, Adkins G B, Pan S Q, Wang H, Liu Y, Zhong W W. . Anal. Chem., 2018, 90: 2787,
CrossRef Google scholar
[41]
Leitner A. . Trends Anal. Chem., 2010, 29: 177,
CrossRef Google scholar
[42]
Sano A, Nakamura H. . Anal. Sci., 2007, 23: 1285,
CrossRef Google scholar
[43]
Gao F Y, Jiao F L, Xia C S, Zhao Y, Ying W T, Xie Y P, Guan X Y, Tao M, Zhang Y J, Qin W J, Qian X H. . Chem. Sci., 2019, 10: 1579,
CrossRef Google scholar
[44]
Xiang X C, Guan F L, Jiao F L, Li H, Zhang W J, Zhang Y J, Qin W J. . Anal. Methods-UK, 2021, 13: 1591,
CrossRef Google scholar
[45]
Zhao L P, Shi J H, Chang L, Wang Y H, Liu S, Li Y, Zhang T, Zuo T, Fu B, Wang G B, Ruan Y Y, Zhang Y L, Xu P. . ACS Omega, 2021, 6: 827,
CrossRef Google scholar
[46]
Zhang C H, Pan Y I, Zhao Y M, Wang P Y, Zhang L Y, Zhang W B. . Anal. Chim. Acta, 2021, 1186: 339099,
CrossRef Google scholar
[47]
Wu G Y, Lu F, Zhao J L, Feng X, Ren Y J, Hu S T, Yu W J, Dong B, Hu L H. . J. Chromatogr. A, 2024, 1714: 464543,
CrossRef Google scholar
[48]
Wu G, Geng H, Xu R, Deng M, Yang C, Xun C, Wang Y, Cai Q, Chen P. . Talanta, 2021, 226: 122186,
CrossRef Google scholar
[49]
Yan S, Huang Z, Chen X, Chen H, Yang X, Gao M, Zhang X. . Anal. Bioanal. Chem., 2023, 415: 6411,
CrossRef Google scholar
[50]
Sun J, Han S Y, Ma L Y, Zhang H, Zhan Z, Aguilar H A, Zhang H Y, Xiao K, Gu Y H, Gu Z Z, Tao W A. . ACS Appl. Mater. Inter., 2021, 13: 3622,
CrossRef Google scholar
[51]
Liu L K, Liu J H, Zhou W, Sui Z G, Liu J, Yang K G, Zhang L H, Liang Z, Zhang Y K. . J. Mater. Chem. B, 2022, 10: 6655,
CrossRef Google scholar
[52]
Zhou J T, Cheng X H, Guo Z C, Ali M M, Zhang G Y, Tao W A, Hu L H, Liu Z. . Angew. Chem. Int. Ed., 2023, 62: e202213938,
CrossRef Google scholar
[53]
Li Y L, Yang K G, Yuan H M, Zhang W J, Sui Z G, Wang N, Lin H L, Zhang L H, Zhang Y K. . Anal. Chem., 2021, 93: 16835,
CrossRef Google scholar
[54]
Chen Y, Zhu Q, Cheng L, Wang Y, Li M, Yang Q, Hu L, Lou D, Li J, Dong X, Lee L P, Liu F. . Nat. Methods, 2021, 18: 212,
CrossRef Google scholar
[55]
Ye W, Pan R, Shi K-Q, Li H-P, Lee L P, Liu F. . Biosens. Bioelectron., 2022, 10: 100099
[56]
Wang S R, He Y, Lu J Y, Wang Y Q, Wu X F, Yan G Q, Fang X N, Liu B H. . ACS Appl. Mater. Inter., 2022, 14: 36341,
CrossRef Google scholar
[57]
Chen Y J, Chen H L, Yang C J, Wu Y L, Deng C H, Sun N R. . Chin. Chem. Lett., 2023, 34: 107352,
CrossRef Google scholar
[58]
Bai H H, Pan Y T, Qi L, Liu L, Zhao X Y, Dong H Y, Cheng X Q, Qin W J, Wang X H. . Talanta, 2018, 186: 513,
CrossRef Google scholar
[59]
Xia C S, Jiao F L, Gao F Y, Wang H P, Lv Y Y, Shen Y H, Zhang Y J, Qian X H. . Anal. Chem., 2018, 90: 6651,
CrossRef Google scholar
[60]
Zhang H Q, Lv Y Y, Du J, Shao W, Jiao F L, Xia C S, Gao F Y, Yu Q, Liu Y Y, Zhang W J, Zhang Y J, Qin W J, Qian X H. . Anal. Chim. Acta., 2020, 1098: 181,
CrossRef Google scholar
[61]
Jiao F, Gao F, Wang H, Deng Y, Zhang Y, Qian X, Zhang Y. . Sci. Rep., 2017, 7: 6984,
CrossRef Google scholar
[62]
Li C W, Lim S O, Xia W Y, Lee H H, Chan L C, Kuo C W, Khoo K H, Chang S S, Cha J H, Kim T W, Hsu J L, Wu Y, Hsu J M, Yamaguchi H, Ding Q Q, Wang Y, Yao J, Lee C C, Wu H J, Sahin A A, Allison J P, Yu D H, Hortobagyi G N, Hung M C. . Nat. Commun., 2016, 7: 12632,
CrossRef Google scholar
[63]
Liu J J, Sharma K, Zangrandi L, Chen C G, Humphrey S J, Chiu Y T, Spetea M, Liu-Chen L Y, Schwarzer C, Mann M. . Science, 2018, 360: eaao4927,
CrossRef Google scholar
[64]
Ma W, Zhang F, Li L P, Chen S, Qi L M, Liu H W, Bai Y. . ACS Appl. Mater. Inter., 2016, 8: 35099,
CrossRef Google scholar
[65]
Zheng H Y, Guan S, Wang X T, Zhao J D, Gao M X, Zhang X M. . Anal. Chem., 2020, 92: 9239,
CrossRef Google scholar
[66]
Xiong F, Jia J, Ma J, Jia Q. . Nanoscale, 2022, 14: 853,
CrossRef Google scholar
[67]
Zhang Y, Peng Y, Yang L J, Lu H J. . Trends Analyt. Chem., 2018, 99: 34,
CrossRef Google scholar
[68]
Wu Y, Zhang N, Wu H, Sun N, Deng C. . Microchim. Acta, 2021, 188: 66,
CrossRef Google scholar
[69]
Lv J, Wang Z, Li F, Zhang Y, Lu H. . Chem. Commun., 2019, 55: 14339,
CrossRef Google scholar
[70]
Costa J, Gatermann M, Nimtz M, Kandzia S, Glatzel M, Conradt H S. . Anal. Chem., 2018, 90: 7871,
CrossRef Google scholar
[71]
Wang X Y, Bai P R, Li Z Y, Zhu Q F, Wei Z W, Feng Y Q. . Angew. Chem. Int. Ed., 2022, 61: e202208138,
CrossRef Google scholar
[72]
Lin W F, Conway L P, Vujasinovic M, Löhr J M, Globisch D. . Angew. Chem. Int. Ed., 2021, 60: 23232,
CrossRef Google scholar
[73]
Zhang H, Li X J, Martin D B, Aebersold R. . Nat. Biotechnol., 2003, 21: 660,
CrossRef Google scholar
[74]
Ma W, Xu S T, Nie H G, Hu B Y, Bai Y, Liu H W. . Chem. Sci., 2019, 10: 2320,
CrossRef Google scholar
[75]
Yin X, Yang J, Zhang M, Wang X, Xu W, Price C-A H, Huang L, Liu W, Su H, Wang W, Chen H, Hou G, Walker M, Zhou Y, Shen Z, Liu J, Qian K, Di W. . ACS Nano, 2022, 16: 2852,
CrossRef Google scholar
[76]
Huang L, Wan J, Wei X, Liu Y, Huang J, Sun X, Zhang R, Gurav D D, Vedarethinam V, Li Y, Chen R, Qian K. . Nat. Commun., 2017, 8: 220,
CrossRef Google scholar
[77]
Yang J, Wang R, Huang L, Zhang M, Niu J, Bao C, Shen N, Dai M, Guo Q, Wang Q, Wang Q, Fu Q, Qian K. . Angew. Chem. Int. Ed., 2019, 59: 1703,
CrossRef Google scholar
[78]
Huang L, Gurav D D, Wu S, Xu W, Vedarethinam V, Yang J, Su H, Wan X, Fang Y, Shen B, Price C-A H, Velliou E, Liu J, Qian K. . Matter, 2019, 1: 1669,
CrossRef Google scholar
[79]
Yagnik G B, Hansen R L, Korte A R, Reichert M D, Vela J, Lee Y J. . Anal. Chem., 2016, 88: 8926,
CrossRef Google scholar
[80]
Ma W, Xu S T, Ai W P, Lin C, Bai Y, Liu H W. . Chem. Commun., 2019, 55: 6898,
CrossRef Google scholar
[81]
Vedarethinam V, Huang L, Zhang M, Su H, Hu H, Xia H, Liu Y, Wu B, Wan X, Shen J, Xu L, Liu W, Ma J, Qian K. . Adv. Funct. Mater., 2020, 30: 2002791,
CrossRef Google scholar
[82]
Li S, Ding H, Qi Z, Yang J, Huang J, Huang L, Zhang M, Tang Y, Shen N, Qian K, Guo Q, Wan J. . Adv. Sci., 2023, 11: 2304610,
CrossRef Google scholar
[83]
Zhang G, Ma C, He Q, Dong H, Cui L, Li L, Li L, Wang Y, Wang X. . iScience, 2023, 26: 106622,
CrossRef Google scholar
[84]
Huang L, Wang L, Hu X, Chen S, Tao Y, Su H, Yang J, Xu W, Vedarethinam V, Wu S, Liu B, Wan X, Lou J, Wang Q, Qian K. . Nat. Commun., 2020, 11: 3556,
CrossRef Google scholar
[85]
Shi F, Huang C, Ren Y, Deng C, Sun N, Shen X. . Anal. Chem., 2022, 94: 16204,
CrossRef Google scholar
[86]
Sun X, Huang L, Zhang R, Xu W, Huang J, Gurav D D, Vedarethinam V, Chen R, Lou J, Wang Q, Wan J, Qian K. . ACS Cent. Sci., 2018, 4: 223,
CrossRef Google scholar
[87]
Chen H, Huang C, Wu Y, Sun N, Deng C. . ACS Nano, 2022, 16: 12952,
CrossRef Google scholar
[88]
Chen H, Zhang N, Wu Y, Yang C, Xie Q, Deng C, Sun N. . Small Sci., 2022, 2: 2100118,
CrossRef Google scholar
[89]
Yan S H, Zheng H Y, Zhao J D, Gao M X, Zhang X M. . Anal. Chem., 2023, 95: 10196,
CrossRef Google scholar
[90]
Chen H L, Qi Y, Yang C Y, Tai Q F, Zhang M, Shen X Z, Deng C H, Guo J M, Jiang S, Sun N R. . ACS Nano, 2023, 17: 23924,
CrossRef Google scholar
[91]
Xu S T, Ma W, Bai Y, Liu H W. . J. Am. Chem. Soc., 2019, 141: 72,
CrossRef Google scholar
[92]
Zhang Z Z, Xu H M, Fan Y Y, Zhang X, Wang W, Zhu J J, Min Q H. . Nano Lett., 2023, 23: 1820,
CrossRef Google scholar
[93]
Rodríguez-Menéndez S, Fernández B, González-Iglesias H, García M, Alvarez L, Alonso J I G, Pereiro R. . Anal. Chem., 2019, 91: 4488,
CrossRef Google scholar
[94]
Wei X, Zheng D H, Cai Y, Jiang R, Chen M L, Yang T, Xu Z R, Yu Y L, Wang J H. . Anal. Chem., 2018, 90: 14543,
CrossRef Google scholar
[95]
Zhang Y Z, Wei Y Y, Liu P, Zhang X, Xu Z R, Tan X D, Chen M L, Wang J H. . Anal. Chem., 2021, 93: 11540,
CrossRef Google scholar
[96]
Cheng Y H, Xie Q H, He M, Chen B B, Chen G, Yin X, Kang Q, Xu Y, Hu B. . Anal. Chim. Acta, 2022, 1212: 339938,
CrossRef Google scholar
[97]
Zhang X W, Liu M X, He M Q, Chen S, Yu Y L, Wang J H. . Anal. Chem., 2021, 93: 6437,
CrossRef Google scholar
[98]
Wen Y, Zhang X W, Li Y Y, Chen S, Yu Y L, Wang J H. . Anal. Chem., 2022, 94: 16196,
CrossRef Google scholar
[99]
Lovric J, Dunevall J, Larsson A, Ren L, Andersson S, Meibom A, Malmberg P, Kurczy M E, Ewing A G. . ACS Nano, 2017, 11: 3446,
CrossRef Google scholar
[100]
Castro D C, Xie Y R, Rubakhin S S, Romanova E V, Sweedler J V. . Nat. Methods, 2021, 18: 1233,
CrossRef Google scholar
[101]
Niehaus M, Soltwisch J, Belov M E, Dreisewerd K. . Nat. Methods, 2019, 16: 925,
CrossRef Google scholar
[102]
Zheng L, Wang H, Zuo P, Liu Y L, Xu H Y, Ye B C. . Anal. Chem., 2022, 94: 7703,
CrossRef Google scholar
[103]
Yue X Y, Fang X X, Sun T, Yi J W, Kuang X J, Guo Q S, Wang Y, Gu H C, Xu H. . Biosens. Bioelectron., 2022, 211: 114384,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/