PDF
Abstract
Small gold nanorods (AuNRs), namely AuNRs with less than 10 nm in diameter, possess a high absorption-to-scattering ratio, a large surface area-to-volume ratio, as well as high cellular uptake behaviors. In this study, we systematically investigate seedless synthesis of AuNRs with diameters ranging from 5 nm to 10 nm. It has been found that several experimental conditions, including the chain length of the used cationic surfactants, and the concentrations of ascorbic acid, NaBH4, and AgNO3 can profoundly affect the obtained products. Under optimal conditions, the production yields of the obtained several AuNRs with different diameters can exceed 90% and even reach almost 100%. The conversion of gold precursors to AuNRs was estimated to be 70%–77% as measured by absorption spectroscopy and inductively coupled plasma mass spectrometry.
Keywords
Small gold nanorod
/
Diameter
/
Production yield
/
Conversion rate
Cite this article
Download citation ▾
Yalan Li, Yunsheng Xia.
Seedless Synthesis of Gold Nanorods with 5–10 nm in Diameters: a Comprehensive Study.
Chemical Research in Chinese Universities, 2024, 40(2): 311-319 DOI:10.1007/s40242-024-3289-0
| [1] |
Sabahat S, Ejaz M, Saira F, Saleem R S, Nazish Y, Khalil L, Naeem A. Chem. Pap., 2023, 77: 5901.
|
| [2] |
Márquez-Castro J E, Licea-Claveríe Á, Licea-Rodriguez J, Quiroga-Sánchez L P, Méndez E R. Eur. Polym. J., 2023, 197: 112341.
|
| [3] |
Han S, Al-Jamal K T. Part. Part. Syst. Charact., 2023, 40: 2300043.
|
| [4] |
Huang M, Cheng R, Wen S, Li L, Gao J, Zhao X, Li C, Zou H, Wang J. Chin. Chem. Lett., 2023, 34: 109379.
|
| [5] |
Alfano M, Alchera E, Sacchi A J, Gori A, Quilici G, Locatelli I, Venegoni C, Luciano R, Gasparri A M, Colombo B, Taiè G, Jose J, Armanetti P, Menichetti L, Musco G, Salonia A, Corti A, Curnis F. Nanobiotechnoly, 2023, 21: 301.
|
| [6] |
Yuan D, Yan H H, Liu J, Liu J, Li C, Wang J. Chin. Chem. Lett., 2020, 31: 455.
|
| [7] |
Kesharwani P, Ma R, Sang L, Fatima M, Sheikh A, Abourehab M A, Gupta N, Chen Z, Zhou Y. Mol. Cancer, 2023, 22: 98.
|
| [8] |
Wei W, Bai F, Fan H. Angew. Chem. Int. Ed., 2019, 58: 11956.
|
| [9] |
Han B, Gao X, Shi L, Zheng Y, Hou K, Lv J, Guo J, Zhang W, Tang Z. Nano Lett., 2017, 17: 6083.
|
| [10] |
Chen L, Lu L L, Wang S F, Xia Y S. ACS Sens., 2017, 2: 781.
|
| [11] |
Chang Y S S, Lee C L, Wang C R C. J. Phys. Chem. B, 1997, 101: 6661.
|
| [12] |
Jana N. R., Gearheart L., Murphy C. J., Chem. Commun., 2001, 617
|
| [13] |
Nikoobakht B, El-Sayed M A. Chem. Mater., 2023, 15: 1957.
|
| [14] |
Jain P K, Lee K S, El-Sayed I H, El-Sayed M A. J. Phys. Chem. B, 200, 110: 7238.
|
| [15] |
Tang S, Peng C, Xu J, Du B, Wang Q, Vinluan R D, Yu M, Kim M J, Zheng J. Angew. Chem. Int. Ed., 201, 55: 16039.
|
| [16] |
Li Z, Huang H, Tang S, Li Y, Yu X, Wang H, Li P, Sun Z, Zhang H, Liu C, Chu P K. Biomaterials, 201, 74: 144.
|
| [17] |
Li Z, Tang S, Wang B, Li Y, Huang H, Wang H, Li P, Li C, Chu P K, Yu X. ACS Biomater. Sci. Eng., 201, 25: 789.
|
| [18] |
Han S, Bouchard R, Sokolov K V. Biomed. Opt. Express, 2019, 10: 3472.
|
| [19] |
Lu L, Xia Y. Anal. Chem., 2015, 87: 8584.
|
| [20] |
Zhang B, Xia Y. Chin. Chem. Lett., 2019, 30: 1663.
|
| [21] |
Jana N R. Small, 2005, 1: 875.
|
| [22] |
Peter Z, Craig B, James W M C, Min Gu. J. Phys. Chem. B, 200, 110: 19315.
|
| [23] |
Ali M R K, Snyder B, El-Sayed M A. Langmuir, 2012, 28: 9807.
|
| [24] |
Li M, Zhou R, Liu X, Tao Q. Spectrosc. Lett., 2019, 52: 239.
|
| [25] |
Liopo A, Wang S, Derry P J, Oraevsky A A, Zubarev E R. RSC Adv., 2015, 5: 91587.
|
| [26] |
Wang W, Li J, Lan S, Rong L, Liu Y, Sheng Y, Zhang H, Yang B. Nanotechnology, 201, 27: 165601.
|
| [27] |
Jia H, Fang C, Zhu X, Ruan Q, Wang Y J, Wang J. Langmuir, 2015, 31: 7418.
|
| [28] |
Chang H H, Murphy C J. Chem. Mater., 2018, 30: 1427.
|
| [29] |
Mbalaha Z S, Edwards P R, Birch D J S, Chen Y. ACS Omega, 2019, 4: 13740.
|
| [30] |
Yoo S, Nam D H, Singh T I, Leem G, Lee S. Nano Convergence, 2022, 9: 5.
|
| [31] |
Si S, Leduc C, Delville M, Lounis B. ChemPhysChem, 2012, 13: 193.
|
| [32] |
Naderi O, Nyman M, Amiri M, Sadeghi R. J. Mol. Liq., 2019, 273: 645.
|
| [33] |
Chen L, Lu L, Wang S, Xia Y. ACS Sensors, 2017, 2: 781.
|
| [34] |
Lin Y, Wu K, Zhou X, Xia Y. Langmuir, 2024, 40: 2979.
|
| [35] |
Murphy C J, Thompson L B, Chernak D, Yang J A, Sivapalan S T, Boulos S P, Huang J, Alkilany A M, Sisco P N. Current Opinion in Colloid and Interface Science, 2011, 16: 128.
|
| [36] |
Murphy C J, Sau T K, Gole A M, Orendorff C J, Gao J, Gou L, Hu-nyadi S E, Li T. J. Phys. Chem. B, 2005, 109: 13857.
|
| [37] |
Wang Z L, Gao R P, Nikoobakht B, El-Sayed M A. J. Phys. Chem. B, 2000, 104: 5417.
|
| [38] |
Magnussen O M. Chem. Rev., 2002, 102: 679.
|
| [39] |
Perez-Juste J, Liz-Marzan L M, Carnie S, Chan D Y C, Mulvaney P. Adv. Funct. Mater., 2004, 14: 571.
|
| [40] |
Li H, Zheng G, Xu L, Su W. Optik., 2014, 125: 2044.
|
| [41] |
Liu M, Guyot-Sionnest P. J. Phys. Chem. B, 2005, 109: 22192.
|
| [42] |
Hubert F, Testard F, Rizza G, Spalla O. Langmuir, 2010, 26: 6887.
|
| [43] |
Link S, El-Sayed M A. J. Phys. Chem. B, 1999, 103: 8410.
|