Stereo-control on Lanthanide Triple-stranded Helicates Toward Enhanced Enantioselective Sensing

Xiaoqing Guo , Xinyuan Zhang , Shaojun Hu , Lipeng Zhou , Qingfu Sun

Chemical Research in Chinese Universities ›› : 1 -7.

PDF
Chemical Research in Chinese Universities ›› : 1 -7. DOI: 10.1007/s40242-024-3287-2
Article

Stereo-control on Lanthanide Triple-stranded Helicates Toward Enhanced Enantioselective Sensing

Author information +
History +
PDF

Abstract

Chiral metal-organic cages (MOCs) serve as a representative model for enzyme simulation, offering a robust platform for reproducing and expanding enzyme functions at the molecular level. In this study, we present a family of lanthanide triple-stranded helicates with finely-tuned stereoconfigurations, self-assembled from ligands featuring both point and axial chiral centers. Circular dichroism (CD) and circularly polarized luminescence (CPL) spectroscopy demonstrated that peripheral point chirality induces the stereoconfiguration (Δ/Λ) of the metal center, while bridging axial chirality defines the cavity chiral microenvironment, resulting in the formation of both homochiral and mesomeric helicates. In comparison to mesocate, the homochiral helicates exhibited heightened enantioselectivity in the luminescent detection of D/L-leucinol.

Keywords

Metal-organic cage / Stereocontrolled self-assembly / Lanthanide helicate / Chiral sensing

Cite this article

Download citation ▾
Xiaoqing Guo, Xinyuan Zhang, Shaojun Hu, Lipeng Zhou, Qingfu Sun. Stereo-control on Lanthanide Triple-stranded Helicates Toward Enhanced Enantioselective Sensing. Chemical Research in Chinese Universities 1-7 DOI:10.1007/s40242-024-3287-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xuan W, Zhang M, Liu Y, Chen Z, Cui Y. J. Am. Chem. Soc., 2012, 134: 6904.

[2]

Schulte T R, Holstein J J, Clever G H. Angew. Chem. Int. Ed., 2019, 58: 5562.

[3]

Guo X Q, Zhou L P, Hu S J, Cai L X, Cheng P M, Sun Q F. J. Am. Chem. Soc., 2021, 143: 6202.

[4]

Wu K, Li K, Hou Y-J, Pan M, Zhang L-Y, Chen L, Su C-Y. Nat. Commun., 201, 7: 10487.

[5]

Zhu C, Tang H, Yang K, Fang Y, Wang K-Y, Xiao Z, Wu X, Li Y, Powell J A, Zhou H-C. J. Am. Chem. Soc., 2021, 143: 12560.

[6]

Wu G C, Chen Y X, Fang S, Tong L, Shen L B, Ge C Q, Pan Y J, Shi X L, Li H. Angew. Chem. Int. Ed., 2021, 60: 16594.

[7]

Jiao J, Dong J, Li Y, Cui Y. Angew. Chem. Int. Ed., 2021, 60: 16568.

[8]

Ueda Y, Ito H, Fujita D, Fujita M. J. Am. Chem. Soc., 2017, 139: 6090.

[9]

Jiao J J, Tan C X, Li Z J, Liu Y, Han X, Cui Y. J. Am. Chem. Soc., 2018, 140: 2251.

[10]

Li X Z, Wu J G, He C, Meng Q T, Duan C Y. Small, 2019, 15: 1804770.

[11]

Guo J, Fan Y-Z, Lu Y-L, Zheng S-P, Su C-Y. Angew. Chem. Int. Ed., 2020, 59: 8661.

[12]

Chu D, Gong W, Jiang H, Tang X, Cui Y, Liu Y. CCS Chem., 2022, 4: 1180.

[13]

Zhao C, Toste F D, Raymond K N, Bergman R G. J. Am. Chem. Soc., 2014, 136: 14409.

[14]

Zhu H T Z, Li Q, Shi B B, Xing H, Sun Y, Lu S, Shangguan L Q, Li X P, Huang F H, Stang P J. J. Am. Chem. Soc., 2020, 142: 17340.

[15]

He Y P, Chen G H, Li D J, Li Q H, Zhang L, Zhang J. Angew. Chem. Int. Ed., 2021, 60: 2920.

[16]

Lu Z F, Ronson T K, Heard A W, Feldmann S, Vanthuyne N, Martinez A, Nitschke J R. Nat. Chem., 2023, 15: 405.

[17]

Pan M, Wu K, Zhang J-H, Su C-Y. Coord. Chem. Rev., 2019, 378: 333.

[18]

Chen W, Tang X, Dou W, Wang B, Guo L, Ju Z, Liu W. Chem. Eur. J., 2017, 23: 9804.

[19]

Tateishi T, Kojima T, Hiraoka S. Commun. Chem., 2018, 1: 20.

[20]

Raee E, Liu B Q, Yang Y Q, Namani T, Cui Y P, Sahai N, Li X P, Liu T B. Nano Lett., 2022, 22: 4421.

[21]

Huang C, Li J J, Zhu X Y, Wang Y F. Nanoscale, 2023, 15: 19475.

[22]

Zhou Y, Li H, Zhu T, Gao T, Yan P. J. Am. Chem. Soc., 2019, 141: 19634.

[23]

Tan Y B, Okayasu Y, Katao S, Nishikawa Y, Asanoma F, Yamada M, Yuasa J, Kawai T. J. Am. Chem. Soc., 2020, 142: 17653.

[24]

Howlader P, Mondal S, Ahmed S, Mukherjee P S. J. Am. Chem. Soc., 2020, 142: 20968.

[25]

Hu S J, Guo X Q, Zhou L P, Yan D N, Cheng P M, Cai L X, Li X Z, Sun Q F. J. Am. Chem. Soc., 2022, 144: 4244.

[26]

He Y-P, Yuan L-B, Song J-S, Chen G-H, Ling Q, Li C, Zhang L, Zhang J. Chem. Mater., 2018, 30: 7769.

[27]

Hamilton T D, MacGillivray L R. Cryst. Growth Des., 2004, 4: 419.

[28]

Jin R Z, Bian Z, He Y B, Gao L X. Chem. Res. Chinese Universities, 2010, 26(6): 857.

[29]

Chen L-J, Yang H-B, Shionoya M. Chem. Soc. Rev., 2017, 46: 2555.

[30]

Sen S K, Natarajan R. Inorg. Chem., 2019, 58: 7180.

[31]

Luo X-Y, Pan M. Coord. Chem. Rev., 2022, 468: 214640.

[32]

Dou W-T, Yang C-Y, Hu L-R, Song B, Jin T, Jia P-P, Ji X, Zheng F, Yang H-B, Xu L. ACS Materials Lett., 2023, 5: 1061.

[33]

Han Z, Wang K, Wang M, Sun T, Xu J, Zhou H-C, Cheng P, Shi W. Chem, 2023, 9: 2561.

[34]

Bunzen J, Bruhn T, Bringmann G, Lutzen A. J. Am. Chem. Soc., 2009, 131: 3621.

[35]

Malik A U, Gan F W, Shen C S, Yu N, Wang R B, Crassous J, Shu M H, Qiu H B. J. Am. Chem. Soc., 2018, 140: 2769.

[36]

Zhou Y Y, Li H F, Zhu T Y, Gao T, Yan P F. J. Am. Chem. Soc., 2019, 141: 19634.

[37]

Ramakrishna E, Tang J D, Tao J J, Fang Q, Zhang Z B, Huang J Y, Li S J. Chem. Commun., 2021, 57: 9088.

[38]

Zhang L Y, Liu H P, Yuan G Z, Han Y F. Chin. J. Chem., 2021, 39: 2273.

[39]

Domoto Y, Yamamoto K, Horie S, Yu Z S, Fujita M. Chem. Sci., 2022, 13: 4372.

[40]

Stang P J, Olenyuk B, Muddiman D C, Smith R D. Organometallics, 1997, 16: 3094.

[41]

Nishioka Y, Yamaguchi T, Kawano M, Fujita M. J. Am. Chem. Soc., 2008, 130: 8160.

[42]

Chepelin O, Ujma J, Wu X, Slawin A M Z, Pitak M B, Coles S J, Michel J, Jones A C, Barran P E, Lusby P J. J. Am. Chem. Soc., 2012, 134: 19334.

[43]

Yang Y, Jia J-H, Pei X-L, Zheng H, Nan Z-A, Wang Q-M. Chem. Commun., 2015, 51: 3804.

[44]

Wu H B, Wang Q M. Angew. Chem. Int. Ed., 2009, 48: 7343.

[45]

Bolliger J L, Belenguer A M, Nitschke J R. Angew. Chem. Int. Ed., 2013, 52: 7958.

[46]

Zhao C, Sun Q-F, Hart-Cooper W M, DiPasquale A G, Toste F D, Bergman R G, Raymond K N. J. Am. Chem. Soc., 2013, 135: 18802.

[47]

Liu T, Liu Y, Xuan W, Cui Y. Angew. Chem. Int. Ed., 2010, 49: 4121.

[48]

Klein C, Gütz C, Bogner M, Topić F, Rissanen K, Lützen A. Angew. Chem. Int. Ed., 2014, 53: 3739.

[49]

Chen L, Kang J, Cui H, Wang Y, Liu L, Zhang L, Su C-Y. Dalton Trans., 2015, 44: 12180.

[50]

Yeung C T, Yim K H, Wong H Y, Pal R, Lo W S, Yan S C, Yee-Man Wong M, Yufit D, Smiles D E, McCormick L J, Teat S J, Shuh D K, Wong W T, Law G L. Nat. Commun., 2017, 8: 1128.

[51]

Li K, Zhang L-Y, Yan C, Wei S-C, Pan M, Zhang L, Su C-Y. J. Am. Chem. Soc., 2014, 136: 4456.

[52]

Yan L-L, Tan C-H, Zhang G-L, Zhou L-P, Bünzli J-C, Sun Q-F. J. Am. Chem. Soc., 2015, 137: 8550.

[53]

Howlader P, Mukherjee P S. Chem. Sci., 201, 7: 5893.

[54]

Nemoto T, Ohshima T, Yamaguchi K, Shibasaki M. J. Am. Chem. Soc., 2001, 123: 2725.

[55]

Brunel J M. Chem. Rev., 2005, 105: 857.

[56]

Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev., 2014, 114: 9047.

[57]

Yan L L, Tan C H, Zhang G L, Zhou L P, Bunzli J C, Sun Q F. J. Am. Chem. Soc., 2015, 137: 8550.

[58]

Yeung C-T, Chan W T K, Yan S-C, Yu K-L, Yim K-H, Wong W-T, Law G-L. Chem. Commun., 2015, 51: 592.

[59]

Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev., 2017, 117: 10608.

[60]

Tang X H, Chu D D, Gong W, Cui Y, Liu Y. Angew. Chem. Int. Ed., 2021, 60: 9099.

[61]

Zou Y Q, Zhang D W, Ronson T K, Tarzia A, Lu Z F, Jelfs K E, Nitschke J R. J. Am. Chem. Soc., 2021, 143: 9009.

[62]

Franchino A, Marti A, Echavarren A M. J. Am. Chem. Soc., 2022, 144: 3497.

[63]

Chen G-H, He Y-P, Yu Y, Lv H, Li S, Wang F, Gu Z-G, Zhang J. Angew. Chem. Int. Ed., 2023, 62: e202300726.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/