Afterglow Nanoprobes for In-vitro Background-free Biomarker Analysis

Ting Zheng, Ying Wang, Xianming Li, Chenghui Li, Peng Wu

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (2) : 213-224. DOI: 10.1007/s40242-024-3280-9
Review

Afterglow Nanoprobes for In-vitro Background-free Biomarker Analysis

Author information +
History +

Abstract

Accurate detection of biomarkers is essential for disease diagnosis. Although the highly sensitive fluorescence probes are feasible for the above goal, it is typically interfered by the auto-fluorescence and light scattering of the biological samples. Photochemical afterglow system (consisting of photosensitizer, afterglow substrate and emitter) based on cascade photochemical reactions exhibits long-lived luminescence (seconds to hours), thus avoiding background interference. With the assistance of polymers, such as polystyrene microspheres, the photochemical afterglow systems have been transformed into homogeneous and water-soluble nanoparticles, and used for in-vitro biomarker analysis. Here, we summarized the principle, preparation and applications of these afterglow nanoparticles, and evaluated their performance in clinical sample testing by comparing with other nanoparticle-based methods. Finally, several problems and possible solutions of afterglow nanoparticle-based methods in biomarker determination were also mentioned.

Keywords

Photochemical afterglow / In-vitro analysis / Background-free detection / Biomarker

Cite this article

Download citation ▾
Ting Zheng, Ying Wang, Xianming Li, Chenghui Li, Peng Wu. Afterglow Nanoprobes for In-vitro Background-free Biomarker Analysis. Chemical Research in Chinese Universities, 2024, 40(2): 213‒224 https://doi.org/10.1007/s40242-024-3280-9

References

[1]
Ballman K V. . J. Clin. Oncol., 2015, 33: 396,
CrossRef Google scholar
[2]
Yeasmin S, Ammanath G, Ali Y, Boehm B O, Yildiz U H, Palaniappan A, Liedberg B. . ACS Appl. Mater., 2020, 12: 31270,
CrossRef Google scholar
[3]
Chen M W, Liao T, Zeng L S, Zeng Z Y, Yang Q L, Wang G X. . Chem. Res. Chinese Universities, 2022, 38(4): 935,
CrossRef Google scholar
[4]
Su X L, Kong X Y, Sun K S, Liu Q, Pei Y T, Hu D H, Xu M, Feng W, Li F Y. . Angew. Chem. Int. Ed., 2022, 61: e202201630,
CrossRef Google scholar
[5]
Mostafa I M, Abdussalam A, Zholudov Y T, Snizhko D V, Zhang W, Hosseini M, Guan Y, Xu G. . Chem. Biomed. Imaging, 2023, 1: 297,
CrossRef Google scholar
[6]
Zhang X, Wu Y, Chen L, Song J, Yang H. . Chem. Biomed. Imaging, 2023, 1: 99,
CrossRef Google scholar
[7]
Li Y, Gecevicius M, Qiu J R. . Chem. Soc. Rev., 2016, 45: 2090,
CrossRef Google scholar
[8]
Wang X Z, Pu K Y. . Chem. Soc. Rev., 2023, 52: 4549,
CrossRef Google scholar
[9]
Wei Z, Liu Y W, Wang F, Liu K, Zhang H J. . Chem. Res. Chinese Universities, 2023, 39(4): 545,
CrossRef Google scholar
[10]
Zhang X K, Li X L, Wang Z H, Bai L, Qu H M, Xu S L. . Chem. Res. Chinese Universities, 2023, 39(6): 960,
CrossRef Google scholar
[11]
Cheng Q, Chen Z Y, Hu L, Song Y W, Zhu S Q, Liu R, Zhu H J. . Chin. Chem. Lett., 2023, 34: 108070,
CrossRef Google scholar
[12]
Ullman E F, Kirakossian H, Singh S, Wu Z P, Irvin B R, Pease J S, Switchenko A C, Irvine J D, Dafforn A, Skold C N, Wagner D B. . Proc. Natl. Acad. Sci. U.S.A., 1994, 91: 5426,
CrossRef Google scholar
[13]
Liu J, Yin J M, Yuan H, Zhao Y Y, Luo S H, Li F Y. . J. Rare Earths, 2022, 40: 1382,
CrossRef Google scholar
[14]
Chen Z H, Li P, Zhang Z G, Zhai X M, Liang J Y, Chen Q, Li K, Lin G F, Liu T C, Wu Y S. . Anal. Chem., 2019, 91: 5777,
CrossRef Google scholar
[15]
Zhang F Y, Hu D H, Su X L, Hong Z D, Feng W, Xu M, Li F Y. . Nano Res., 2022, 15: 8360,
CrossRef Google scholar
[16]
Ullman E F, Kirakossian H, Switchenko A C, Ishkanian J, Ericson M, Wartchow C A, Pirio M, Pease J, Irvin B R, Singh S, Singh R, Patel R, Dafforn A, Davalian D, Skold C, Kurn N, Wagner D B. . Clin. Chem., 1996, 42: 1518,
CrossRef Google scholar
[17]
Guo Q S, Wang Y, Chen C, Wei D, Fu J P, Xu H, Gu H C. . Small, 2020, 16: 1907521,
CrossRef Google scholar
[18]
Hao L W, Yang W T, Xu Y, Cui T M, Zhu G Q, Zeng W W, Bian K X, Liang H Y, Zhang P F, Zhang B B. . Biosens. Bioelectron., 2022, 212: 114411,
CrossRef Google scholar
[19]
Kong X Y, Su X L, Feng W, Li F Y. . Sens. Actuators B: Chem, 2023, 382: 133460,
CrossRef Google scholar
[20]
Xu M, Liu J, Su X L, Zhou Q W, Yuan H, Wen Y, Cheng Y H, Li F Y. . Sci. China Chem., 2021, 64: 2125,
CrossRef Google scholar
[21]
Shen H, Liao S, Li Z, Wang Y, Huan S, Zhang X-B, Song G. . Chem. Eur. J., 2023, 29: e202301209,
CrossRef Google scholar
[22]
Anjong T F, Choi H, Yoo J, Bak Y, Cho Y, Kim D, Lee S, Lee K, Kim B-G, Kim S. . Small, 2022, 18: 2200245,
CrossRef Google scholar
[23]
Li Z, Xu L, Li J-Y, Lei L, Liang P-Z, Wu Q, Yang F, Ren T-B, Yin X, Yuan L, Zhang X-B. . J. Am. Chem. Soc., 2023, 145: 26736,
CrossRef Google scholar
[24]
Jiang Y Y, Huang J G, Zhen X, Zeng Z L, Li J C, Xie C, Miao Q Q, Chen J, Chen P, Pu K Y. . Nat. Commun., 2019, 10: 2064,
CrossRef Google scholar
[25]
Hananya N, Green O, Blau R, Satchi-Fainaro R, Shabat D. . Angew. Chem. Int. Ed., 2017, 56: 11793,
CrossRef Google scholar
[26]
Bartlett P D, Schaap A P. . J. Am. Chem. Soc., 1970, 92: 3223,
CrossRef Google scholar
[27]
Schaap A. P., Tetrahedron Lett., 1971, 1757
[28]
Zheng X, Wu W, Zheng Y, Ding Y, Xiang Y, Liu B, Tong A. . Chem. Eur. J., 2021, 27: 6911,
CrossRef Google scholar
[29]
Duan X, Zhang G-Q, Ji S, Zhang Y, Li J, Ou H, Gao Z, Feng G, Ding D. . Angew. Chem. Int. Ed., 2022, 61: e202116174,
CrossRef Google scholar
[30]
Chen W, Zhang Y, Li Q, Jiang Y, Zhou H, Liu Y, Miao Q, Gao M. . J. Am. Chem. Soc., 2022, 144: 6719,
CrossRef Google scholar
[31]
Liu Y, Teng L, Lou X-F, Zhang X-B, Song G. . J. Am. Chem. Soc., 2023, 145: 5134,
CrossRef Google scholar
[32]
Lei L, Yang F, Meng X, Xu L, Liang P, Ma Y, Dong Z, Wang Y, Zhang X-B, Song G. . J. Am. Chem. Soc., 2023, 145: 24386,
CrossRef Google scholar
[33]
Miao Q Q, Xie C, Zhen X, Lyu Y, Duan H W, Liu X G, Jokerst J V, Pu K Y. . Nat. Biotechnol., 2017, 35: 1102,
CrossRef Google scholar
[34]
Zhen X, Xie C, Pu K. . Angew. Chem. Int. Ed., 2018, 57: 3938,
CrossRef Google scholar
[35]
Wang Y, Song G, Liao S, Qin Q, Zhao Y, Shi L, Guan K, Gong X, Wang P, Yin X, Chen Q, Zhang X-B. . Angew. Chem. Int. Ed., 2021, 60: 19779,
CrossRef Google scholar
[36]
Liao S, Wang Y, Li Z, Zhang Y, Yin X, Huan S, Zhang X-B, Liu S, Song G. . Theranostics, 2022, 12: 6883,
CrossRef Google scholar
[37]
Williams T P, Milby S E. . Vision Res., 1968, 8: 359,
CrossRef Google scholar
[38]
Zaklika K A, Kissel T, Thayer A L, Burns P A, Schaap A P. . Photochem. Photobiol., 1979, 30: 35,
CrossRef Google scholar
[39]
Zaklika K A, Thayer A L, Schaap A P. . J. Am. Chem. Soc., 1978, 100: 4916,
CrossRef Google scholar
[40]
Zaklika K A, Kaskar B, Schaap A P. . J. Am. Chem. Soc., 1980, 102: 386,
CrossRef Google scholar
[41]
Schaap A P, Gagnon S D. . J. Am. Chem. Soc., 1982, 104: 3504,
CrossRef Google scholar
[42]
Matsumoto M. . J. Photoch. Photobio. C, 2004, 5: 27,
CrossRef Google scholar
[43]
Handley R S, Stern A J, Schaap A P. . Tetrahedron Lett., 1985, 26: 3183,
CrossRef Google scholar
[44]
Wang X, Yuan W, Xu M, Su X L, Li F Y. . ACS Appl. Mater., 2022, 14: 259,
CrossRef Google scholar
[45]
Lyu Y, Cui D, Huang J G, Fan W X, Miao Y S, Pu K Y. . Angew. Chem. Int. Ed., 2019, 58: 4983,
CrossRef Google scholar
[46]
Liu Y W, Li Y Z, Wen Y, Su X L, Xu M, Feng W, Liu Q, Li F Y. . ACS Mater., 2021, 3: 713
[47]
Liu Y W, Li Y Z, Pu T, Pei Y T, Fan Y W, Xu C J, Li F Y. . New J. Chem., 2023, 47: 16794,
CrossRef Google scholar
[48]
Ugelstad J, Elaasser M S, Vanderhoff J W. . J. Polym. Sci. C: Polym. Phys., 1973, 11: 503
[49]
Asua J M. . Prog. Polym. Sci., 2002, 27: 1283,
CrossRef Google scholar
[50]
Lovell P A, Schork F J. . Biomacromolecules, 2020, 21: 4396,
CrossRef Google scholar
[51]
Fessi H, Puisieux F, Devissaguet J P, Ammoury N, Benita S. . Int. J. Pharm., 1989, 55: R1,
CrossRef Google scholar
[52]
Govender T, Stolnik S, Garnett M C, Illum L, Davis S S. . J. Control. Release, 1999, 57: 171,
CrossRef Google scholar
[53]
Yan X, Bernard J, Ganachaud F. . Adv. Colloid Interfac., 2021, 294: 102474,
CrossRef Google scholar
[54]
He S S, Xie C, Jiang Y Y, Pu K Y. . Adv. Mater., 2019, 31: 1902672,
CrossRef Google scholar
[55]
Li Z, Liu Q, Li Y, Yuan W, Li F Y. . J. Rare Earths, 2021, 39: 11,
CrossRef Google scholar
[56]
Wang Y, Cao F, Fu Y, Chen H, Zhang Y, Wang C, Li Y, Wang H. . Catalysis Today, 2023, 407: 156,
CrossRef Google scholar
[57]
Chen X, Wu Y, Dau V T, Nguyen N-T, Ta H T. . Biomaterials Science, 2023, 11: 1923,
CrossRef Google scholar
[58]
Huang C, Shao N, Huang Y, Chen J, Wang D, Hu G, Zhang H, Luo L, Xiao Z. . Materials Today Bio, 2023, 23: 100839,
CrossRef Google scholar
[59]
Wu L, Ishigaki Y, Hu Y, Sugimoto K, Zeng W, Harimoto T, Sun Y, He J, Suzuki T, Jiang X, Chen H-Y, Ye D. . Nat. Commun., 2020, 11: 446,
CrossRef Google scholar
[60]
Yang J, Yin W, Van R, Yin K, Wang P, Zheng C, Zhu B, Ran K, Zhang C, Kumar M, Shao Y, Ran C. . Nat. Commun., 2020, 11: 4052,
CrossRef Google scholar
[61]
Chen C, Gao H Q, Ou H L, Kwok R T K, Tang Y H, Zheng D H, Ding D. . J. Am. Chem. Soc., 2022, 144: 3429,
CrossRef Google scholar
[62]
Liu Y C, Teng L L, Lyu Y F, Song G S, Zhang X-B, Tan W H. . Nat. Commun., 2022, 13: 2216,
CrossRef Google scholar
[63]
Zeng W H, Wu L Y, Ishigaki Y, Harimoto T, Hu Y X, Sun Y D, Wang Y Q, Suzuki T, Chen H-Y, Ye D J. . Angew. Chem. Int. Ed., 2022, 61: e202111759,
CrossRef Google scholar
[64]
Dai C, Kong D, Chen C, Liu Y, Wei D. . Adv. Funct. Mater., 2023, 33: 2301948,
CrossRef Google scholar
[65]
Lassabe G, Kramer K, Hammock B D, Gonzalez-Sapienza G, Gonzalez-Techera A. . Anal. Chem., 2018, 90: 6187,
CrossRef Google scholar
[66]
Zhuang S H, Guo X X, Wu Y S, Chen Z H, Chen Y, Ren Z Q, Liu T C. . J. Fluoresc., 2016, 26: 317,
CrossRef Google scholar
[67]
Simon A B, Frampton J P, Huang N-T, Kurabayashi K, Paczesny S, Takayama S. . Technology, 2014, 2: 176,
CrossRef Google scholar
[68]
Berson S A, Yalow R S. . J. Clin. Investig., 1959, 38: 1996,
CrossRef Google scholar
[69]
Engvall E, Perlmann P. . Immunochemistry, 1971, 8: 871,
CrossRef Google scholar
[70]
Peng P, Liu C, Li Z D, Xue Z R, Mao P, Hu J, Xu F, Yao C Y, You M L. . Trac-Trend. Anal. Chem., 2022, 152: 116605,
CrossRef Google scholar
[71]
Su P, Chen X N, He Z J, Yang Y. . Chem. Res. Chinese Universities, 2017, 33(6): 876,
CrossRef Google scholar
[72]
Zhao Q, Lu D, Zhang G, Zhang D, Shi X. . Talanta, 2021, 223: 121722,
CrossRef Google scholar
[73]
Zhou S, Zheng W, Chen Z, Tu D, Liu Y, Ma E, Li R, Zhu H, Huang M, Chen X. . Angew. Chem. Int. Ed., 2014, 53: 12498,
CrossRef Google scholar
[74]
Kal-Koshvandi A T. . Trac-Trend. Anal. Chem., 2020, 128: 115920,
CrossRef Google scholar
[75]
Zhang Q-Y, Chen H, Lin Z, Lin J-M. . J. Pharm. Anal., 2012, 2: 130,
CrossRef Google scholar
[76]
Fan H. Z., Zheng J. J., Xie J. Y., Liu J. W., Gao X. F., Yan X. Y., Fan K. L., Gao L. Z., Adv. Mater., 2023, 2300387
[77]
Liang X H, Lin Z Z, Li L, Tang D P, Kong J F. . Analyst, 2022, 147: 2851,
CrossRef Google scholar
[78]
Li F, Zhang Y F, Liu J C, He J B. . Anal. Methods, 2018, 10: 722,
CrossRef Google scholar
[79]
Qin D M, Jiang X H, Mo G C, Feng J S, Deng B Y. . Electrochim. Acta, 2020, 335: 135621,
CrossRef Google scholar
[80]
Bahadir E B, Sezginturk M K. . Trac-Trend. Anal. Chem., 2016, 82: 286,
CrossRef Google scholar
[81]
Zheng T, Li X M, Xie Y-N, Yang B, Wu P. . Anal. Chem., 2023, 95: 6053,
CrossRef Google scholar
[82]
Zheng T, Li X M, Si Y J, Wang M J, Zhou Y Z, Yang Y S, Liang N, Ying B W, Wu P. . Biosens. Bioelectron., 2023, 222: 114989,
CrossRef Google scholar
[83]
Nan X, Yang L, Cui Y. . Clin. Chim. Acta, 2023, 544: 117337,
CrossRef Google scholar
[84]
Wang D M, He S G, Wang X H, Yan Y Q, Liu J Z, Wu S M, Liu S G, Lei Y, Chen M, Li L, Zhang J L, Zhang L W, Hu X, Zheng X H, Bai J W, Zhang Y L, Zhang Y T, Song M X, Tang Y G. . Nat. Biomed. Eng., 2020, 4: 1150,
CrossRef Google scholar
[85]
Gupta R, Gupta P, Wang S, Melnykov A, Jiang Q, Seth A, Wang Z, Morrissey J J, George I, Gandra S, Sinha P, Storch G A, Parikh B A, Genin G M, Singamaneni S. . Nat. Biomed. Eng., 2023, 7: 1556,
CrossRef Google scholar
[86]
Ji T X, Xu X Q, Wang X D, Cao N, Han X R, Wang M H, Chen B, Lin Z, Jia H Y, Deng M, Xia Y, Guo X G, Lei M, Liu Z W, Zhou Q, Chen G Y. . ACS Nano, 2020, 14: 16864,
CrossRef Google scholar
[87]
Miller B S, Bezinge L, Gliddon H D, Huang D, Dold G, Gray E R, Heaney J, Dobson P J, Nastouli E, Morton J J L, McKendry R A. . Nature, 2020, 587: 588,
CrossRef Google scholar
[88]
Serebrennikova K, Samsonova J, Osipov A. . Nano-Micro Lett., 2018, 10: 24,
CrossRef Google scholar
[89]
Huang L, Zhang Y X, Liao T, Xu K, Jiang C X, Zhuo D L, Wang Y, Wen H-M, Wang J, Ao L J, Hu J. . Small, 2021, 17: 2100862,
CrossRef Google scholar
[90]
Chen Y P, Sun J S, Xianyu Y L, Yin B F, Niu Y J, Wang S B, Cao F J, Zhang X Q, Wang Y, Jiang X Y. . Nanoscale, 2016, 8: 15205,
CrossRef Google scholar
[91]
Huang E Q, Huang D Z, Wang Y, Cai D Y, Luo Y Z, Zhong Z M, Liu D Y. . Biosens. Bioelectron., 2022, 195: 113684,
CrossRef Google scholar
[92]
Panraksa Y, Apilux A, Jampasa S, Puthong S, Henry C S, Rengpipat S, Chailapakul O. . Sens. Actuators B-Chem, 2021, 329: 129241,
CrossRef Google scholar
[93]
Gao F, Liu Y, Lei C, Liu C, Song H, Gu Z Y, Jiang P, Jing S, Wan J J, Yu C Z. . Small Methods, 2021, 5: 2000924,
CrossRef Google scholar
[94]
Liu X X, Yang X S, Li K, Liu H F, Xiao R, Wang W Y, Wang C W, Wang S Q. . Sens. Actuators B: Chem, 2020, 320: 128350,
CrossRef Google scholar
[95]
Hong D G, Kim K, Jo E-J, Kim M-G. . Anal. Chem., 2021, 93: 7925,
CrossRef Google scholar
[96]
Liu X Y, Wang K, Cao B, Shen L S, Ke X, Cui D X, Zhong C M, Li W W. . Anal. Chem., 2021, 93: 3626,
CrossRef Google scholar
[97]
Vi T, Walkenfort B, Koenig M, Salehi M, Schluecker S. . Angew. Chem. Int. Ed., 2019, 58: 442,
CrossRef Google scholar
[98]
Zhan L, Granade T, Liu Y, Wei X, Youngpairoj A, Sullivan V, Johnson J, Bischof J. . Microsyst. Nanoeng., 2020, 6: 54,
CrossRef Google scholar
[99]
Loynachan C N, Thomas M R, Gray E R, Richards D A, Kim J, Miller B S, Brookes J C, Agarwal S, Chudasama V, McKendry R A, Stevens M M. . ACS Nano, 2018, 12: 279,
CrossRef Google scholar
[100]
Wang Q, Hou M L, Liu L P, Ma J, Zhang X G, Zhou Z X, Cao Y X. . Biomed. Environ. Sci., 2020, 33: 174
[101]
Sun A-L, Zhang Y-F, Sun G-P, Wang X-N, Tang D. . Biosens. Bioelectron., 2017, 89: 659,
CrossRef Google scholar
[102]
Liu Y T, Shen W, Li Q, Shu J N, Gao L F, Ma M M, Wang W, Cui H. . Nat. Commun., 2017, 8: 1003,
CrossRef Google scholar
[103]
Xu C, Huang J, Jiang Y, He S, Zhang C, Pu K. . Nat. Biomed. Eng., 2023, 7: 298,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/