Afterglow Nanoprobes for In-vitro Background-free Biomarker Analysis

Ting Zheng , Ying Wang , Xianming Li , Chenghui Li , Peng Wu

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (2) : 213 -224.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (2) : 213 -224. DOI: 10.1007/s40242-024-3280-9
Review

Afterglow Nanoprobes for In-vitro Background-free Biomarker Analysis

Author information +
History +
PDF

Abstract

Accurate detection of biomarkers is essential for disease diagnosis. Although the highly sensitive fluorescence probes are feasible for the above goal, it is typically interfered by the auto-fluorescence and light scattering of the biological samples. Photochemical afterglow system (consisting of photosensitizer, afterglow substrate and emitter) based on cascade photochemical reactions exhibits long-lived luminescence (seconds to hours), thus avoiding background interference. With the assistance of polymers, such as polystyrene microspheres, the photochemical afterglow systems have been transformed into homogeneous and water-soluble nanoparticles, and used for in-vitro biomarker analysis. Here, we summarized the principle, preparation and applications of these afterglow nanoparticles, and evaluated their performance in clinical sample testing by comparing with other nanoparticle-based methods. Finally, several problems and possible solutions of afterglow nanoparticle-based methods in biomarker determination were also mentioned.

Keywords

Photochemical afterglow / In-vitro analysis / Background-free detection / Biomarker

Cite this article

Download citation ▾
Ting Zheng, Ying Wang, Xianming Li, Chenghui Li, Peng Wu. Afterglow Nanoprobes for In-vitro Background-free Biomarker Analysis. Chemical Research in Chinese Universities, 2024, 40(2): 213-224 DOI:10.1007/s40242-024-3280-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ballman K V. J. Clin. Oncol., 2015, 33: 396.

[2]

Yeasmin S, Ammanath G, Ali Y, Boehm B O, Yildiz U H, Palaniappan A, Liedberg B. ACS Appl. Mater., 2020, 12: 31270.

[3]

Chen M W, Liao T, Zeng L S, Zeng Z Y, Yang Q L, Wang G X. Chem. Res. Chinese Universities, 2022, 38(4): 935.

[4]

Su X L, Kong X Y, Sun K S, Liu Q, Pei Y T, Hu D H, Xu M, Feng W, Li F Y. Angew. Chem. Int. Ed., 2022, 61: e202201630.

[5]

Mostafa I M, Abdussalam A, Zholudov Y T, Snizhko D V, Zhang W, Hosseini M, Guan Y, Xu G. Chem. Biomed. Imaging, 2023, 1: 297.

[6]

Zhang X, Wu Y, Chen L, Song J, Yang H. Chem. Biomed. Imaging, 2023, 1: 99.

[7]

Li Y, Gecevicius M, Qiu J R. Chem. Soc. Rev., 201, 45: 2090.

[8]

Wang X Z, Pu K Y. Chem. Soc. Rev., 2023, 52: 4549.

[9]

Wei Z, Liu Y W, Wang F, Liu K, Zhang H J. Chem. Res. Chinese Universities, 2023, 39(4): 545.

[10]

Zhang X K, Li X L, Wang Z H, Bai L, Qu H M, Xu S L. Chem. Res. Chinese Universities, 2023, 39(6): 960.

[11]

Cheng Q, Chen Z Y, Hu L, Song Y W, Zhu S Q, Liu R, Zhu H J. Chin. Chem. Lett., 2023, 34: 108070.

[12]

Ullman E F, Kirakossian H, Singh S, Wu Z P, Irvin B R, Pease J S, Switchenko A C, Irvine J D, Dafforn A, Skold C N, Wagner D B. Proc. Natl. Acad. Sci. U.S.A., 1994, 91: 5426.

[13]

Liu J, Yin J M, Yuan H, Zhao Y Y, Luo S H, Li F Y. J. Rare Earths, 2022, 40: 1382.

[14]

Chen Z H, Li P, Zhang Z G, Zhai X M, Liang J Y, Chen Q, Li K, Lin G F, Liu T C, Wu Y S. Anal. Chem., 2019, 91: 5777.

[15]

Zhang F Y, Hu D H, Su X L, Hong Z D, Feng W, Xu M, Li F Y. Nano Res., 2022, 15: 8360.

[16]

Ullman E F, Kirakossian H, Switchenko A C, Ishkanian J, Ericson M, Wartchow C A, Pirio M, Pease J, Irvin B R, Singh S, Singh R, Patel R, Dafforn A, Davalian D, Skold C, Kurn N, Wagner D B. Clin. Chem., 199, 42: 1518.

[17]

Guo Q S, Wang Y, Chen C, Wei D, Fu J P, Xu H, Gu H C. Small, 2020, 16: 1907521.

[18]

Hao L W, Yang W T, Xu Y, Cui T M, Zhu G Q, Zeng W W, Bian K X, Liang H Y, Zhang P F, Zhang B B. Biosens. Bioelectron., 2022, 212: 114411.

[19]

Kong X Y, Su X L, Feng W, Li F Y. Sens. Actuators B: Chem, 2023, 382: 133460.

[20]

Xu M, Liu J, Su X L, Zhou Q W, Yuan H, Wen Y, Cheng Y H, Li F Y. Sci. China Chem., 2021, 64: 2125.

[21]

Shen H, Liao S, Li Z, Wang Y, Huan S, Zhang X-B, Song G. Chem. Eur. J., 2023, 29: e202301209.

[22]

Anjong T F, Choi H, Yoo J, Bak Y, Cho Y, Kim D, Lee S, Lee K, Kim B-G, Kim S. Small, 2022, 18: 2200245.

[23]

Li Z, Xu L, Li J-Y, Lei L, Liang P-Z, Wu Q, Yang F, Ren T-B, Yin X, Yuan L, Zhang X-B. J. Am. Chem. Soc., 2023, 145: 26736.

[24]

Jiang Y Y, Huang J G, Zhen X, Zeng Z L, Li J C, Xie C, Miao Q Q, Chen J, Chen P, Pu K Y. Nat. Commun., 2019, 10: 2064.

[25]

Hananya N, Green O, Blau R, Satchi-Fainaro R, Shabat D. Angew. Chem. Int. Ed., 2017, 56: 11793.

[26]

Bartlett P D, Schaap A P. J. Am. Chem. Soc., 1970, 92: 3223.

[27]

Schaap A. P., Tetrahedron Lett., 1971, 1757

[28]

Zheng X, Wu W, Zheng Y, Ding Y, Xiang Y, Liu B, Tong A. Chem. Eur. J., 2021, 27: 6911.

[29]

Duan X, Zhang G-Q, Ji S, Zhang Y, Li J, Ou H, Gao Z, Feng G, Ding D. Angew. Chem. Int. Ed., 2022, 61: e202116174.

[30]

Chen W, Zhang Y, Li Q, Jiang Y, Zhou H, Liu Y, Miao Q, Gao M. J. Am. Chem. Soc., 2022, 144: 6719.

[31]

Liu Y, Teng L, Lou X-F, Zhang X-B, Song G. J. Am. Chem. Soc., 2023, 145: 5134.

[32]

Lei L, Yang F, Meng X, Xu L, Liang P, Ma Y, Dong Z, Wang Y, Zhang X-B, Song G. J. Am. Chem. Soc., 2023, 145: 24386.

[33]

Miao Q Q, Xie C, Zhen X, Lyu Y, Duan H W, Liu X G, Jokerst J V, Pu K Y. Nat. Biotechnol., 2017, 35: 1102.

[34]

Zhen X, Xie C, Pu K. Angew. Chem. Int. Ed., 2018, 57: 3938.

[35]

Wang Y, Song G, Liao S, Qin Q, Zhao Y, Shi L, Guan K, Gong X, Wang P, Yin X, Chen Q, Zhang X-B. Angew. Chem. Int. Ed., 2021, 60: 19779.

[36]

Liao S, Wang Y, Li Z, Zhang Y, Yin X, Huan S, Zhang X-B, Liu S, Song G. Theranostics, 2022, 12: 6883.

[37]

Williams T P, Milby S E. Vision Res., 1968, 8: 359.

[38]

Zaklika K A, Kissel T, Thayer A L, Burns P A, Schaap A P. Photochem. Photobiol., 1979, 30: 35.

[39]

Zaklika K A, Thayer A L, Schaap A P. J. Am. Chem. Soc., 1978, 100: 4916.

[40]

Zaklika K A, Kaskar B, Schaap A P. J. Am. Chem. Soc., 1980, 102: 386.

[41]

Schaap A P, Gagnon S D. J. Am. Chem. Soc., 1982, 104: 3504.

[42]

Matsumoto M. J. Photoch. Photobio. C, 2004, 5: 27.

[43]

Handley R S, Stern A J, Schaap A P. Tetrahedron Lett., 1985, 26: 3183.

[44]

Wang X, Yuan W, Xu M, Su X L, Li F Y. ACS Appl. Mater., 2022, 14: 259.

[45]

Lyu Y, Cui D, Huang J G, Fan W X, Miao Y S, Pu K Y. Angew. Chem. Int. Ed., 2019, 58: 4983.

[46]

Liu Y W, Li Y Z, Wen Y, Su X L, Xu M, Feng W, Liu Q, Li F Y. ACS Mater., 2021, 3: 713.

[47]

Liu Y W, Li Y Z, Pu T, Pei Y T, Fan Y W, Xu C J, Li F Y. New J. Chem., 2023, 47: 16794.

[48]

Ugelstad J, Elaasser M S, Vanderhoff J W. J. Polym. Sci. C: Polym. Phys., 1973, 11: 503.

[49]

Asua J M. Prog. Polym. Sci., 2002, 27: 1283.

[50]

Lovell P A, Schork F J. Biomacromolecules, 2020, 21: 4396.

[51]

Fessi H, Puisieux F, Devissaguet J P, Ammoury N, Benita S. Int. J. Pharm., 1989, 55: R1.

[52]

Govender T, Stolnik S, Garnett M C, Illum L, Davis S S. J. Control. Release, 1999, 57: 171.

[53]

Yan X, Bernard J, Ganachaud F. Adv. Colloid Interfac., 2021, 294: 102474.

[54]

He S S, Xie C, Jiang Y Y, Pu K Y. Adv. Mater., 2019, 31: 1902672.

[55]

Li Z, Liu Q, Li Y, Yuan W, Li F Y. J. Rare Earths, 2021, 39: 11.

[56]

Wang Y, Cao F, Fu Y, Chen H, Zhang Y, Wang C, Li Y, Wang H. Catalysis Today, 2023, 407: 156.

[57]

Chen X, Wu Y, Dau V T, Nguyen N-T, Ta H T. Biomaterials Science, 2023, 11: 1923.

[58]

Huang C, Shao N, Huang Y, Chen J, Wang D, Hu G, Zhang H, Luo L, Xiao Z. Materials Today Bio, 2023, 23: 100839.

[59]

Wu L, Ishigaki Y, Hu Y, Sugimoto K, Zeng W, Harimoto T, Sun Y, He J, Suzuki T, Jiang X, Chen H-Y, Ye D. Nat. Commun., 2020, 11: 446.

[60]

Yang J, Yin W, Van R, Yin K, Wang P, Zheng C, Zhu B, Ran K, Zhang C, Kumar M, Shao Y, Ran C. Nat. Commun., 2020, 11: 4052.

[61]

Chen C, Gao H Q, Ou H L, Kwok R T K, Tang Y H, Zheng D H, Ding D. J. Am. Chem. Soc., 2022, 144: 3429.

[62]

Liu Y C, Teng L L, Lyu Y F, Song G S, Zhang X-B, Tan W H. Nat. Commun., 2022, 13: 2216.

[63]

Zeng W H, Wu L Y, Ishigaki Y, Harimoto T, Hu Y X, Sun Y D, Wang Y Q, Suzuki T, Chen H-Y, Ye D J. Angew. Chem. Int. Ed., 2022, 61: e202111759.

[64]

Dai C, Kong D, Chen C, Liu Y, Wei D. Adv. Funct. Mater., 2023, 33: 2301948.

[65]

Lassabe G, Kramer K, Hammock B D, Gonzalez-Sapienza G, Gonzalez-Techera A. Anal. Chem., 2018, 90: 6187.

[66]

Zhuang S H, Guo X X, Wu Y S, Chen Z H, Chen Y, Ren Z Q, Liu T C. J. Fluoresc., 201, 26: 317.

[67]

Simon A B, Frampton J P, Huang N-T, Kurabayashi K, Paczesny S, Takayama S. Technology, 2014, 2: 176.

[68]

Berson S A, Yalow R S. J. Clin. Investig., 1959, 38: 1996.

[69]

Engvall E, Perlmann P. Immunochemistry, 1971, 8: 871.

[70]

Peng P, Liu C, Li Z D, Xue Z R, Mao P, Hu J, Xu F, Yao C Y, You M L. Trac-Trend. Anal. Chem., 2022, 152: 116605.

[71]

Su P, Chen X N, He Z J, Yang Y. Chem. Res. Chinese Universities, 2017, 33(6): 876.

[72]

Zhao Q, Lu D, Zhang G, Zhang D, Shi X. Talanta, 2021, 223: 121722.

[73]

Zhou S, Zheng W, Chen Z, Tu D, Liu Y, Ma E, Li R, Zhu H, Huang M, Chen X. Angew. Chem. Int. Ed., 2014, 53: 12498.

[74]

Kal-Koshvandi A T. Trac-Trend. Anal. Chem., 2020, 128: 115920.

[75]

Zhang Q-Y, Chen H, Lin Z, Lin J-M. J. Pharm. Anal., 2012, 2: 130.

[76]

Fan H. Z., Zheng J. J., Xie J. Y., Liu J. W., Gao X. F., Yan X. Y., Fan K. L., Gao L. Z., Adv. Mater., 2023, 2300387

[77]

Liang X H, Lin Z Z, Li L, Tang D P, Kong J F. Analyst, 2022, 147: 2851.

[78]

Li F, Zhang Y F, Liu J C, He J B. Anal. Methods, 2018, 10: 722.

[79]

Qin D M, Jiang X H, Mo G C, Feng J S, Deng B Y. Electrochim. Acta, 2020, 335: 135621.

[80]

Bahadir E B, Sezginturk M K. Trac-Trend. Anal. Chem., 201, 82: 286.

[81]

Zheng T, Li X M, Xie Y-N, Yang B, Wu P. Anal. Chem., 2023, 95: 6053.

[82]

Zheng T, Li X M, Si Y J, Wang M J, Zhou Y Z, Yang Y S, Liang N, Ying B W, Wu P. Biosens. Bioelectron., 2023, 222: 114989.

[83]

Nan X, Yang L, Cui Y. Clin. Chim. Acta, 2023, 544: 117337.

[84]

Wang D M, He S G, Wang X H, Yan Y Q, Liu J Z, Wu S M, Liu S G, Lei Y, Chen M, Li L, Zhang J L, Zhang L W, Hu X, Zheng X H, Bai J W, Zhang Y L, Zhang Y T, Song M X, Tang Y G. Nat. Biomed. Eng., 2020, 4: 1150.

[85]

Gupta R, Gupta P, Wang S, Melnykov A, Jiang Q, Seth A, Wang Z, Morrissey J J, George I, Gandra S, Sinha P, Storch G A, Parikh B A, Genin G M, Singamaneni S. Nat. Biomed. Eng., 2023, 7: 1556.

[86]

Ji T X, Xu X Q, Wang X D, Cao N, Han X R, Wang M H, Chen B, Lin Z, Jia H Y, Deng M, Xia Y, Guo X G, Lei M, Liu Z W, Zhou Q, Chen G Y. ACS Nano, 2020, 14: 16864.

[87]

Miller B S, Bezinge L, Gliddon H D, Huang D, Dold G, Gray E R, Heaney J, Dobson P J, Nastouli E, Morton J J L, McKendry R A. Nature, 2020, 587: 588.

[88]

Serebrennikova K, Samsonova J, Osipov A. Nano-Micro Lett., 2018, 10: 24.

[89]

Huang L, Zhang Y X, Liao T, Xu K, Jiang C X, Zhuo D L, Wang Y, Wen H-M, Wang J, Ao L J, Hu J. Small, 2021, 17: 2100862.

[90]

Chen Y P, Sun J S, Xianyu Y L, Yin B F, Niu Y J, Wang S B, Cao F J, Zhang X Q, Wang Y, Jiang X Y. Nanoscale, 201, 8: 15205.

[91]

Huang E Q, Huang D Z, Wang Y, Cai D Y, Luo Y Z, Zhong Z M, Liu D Y. Biosens. Bioelectron., 2022, 195: 113684.

[92]

Panraksa Y, Apilux A, Jampasa S, Puthong S, Henry C S, Rengpipat S, Chailapakul O. Sens. Actuators B-Chem, 2021, 329: 129241.

[93]

Gao F, Liu Y, Lei C, Liu C, Song H, Gu Z Y, Jiang P, Jing S, Wan J J, Yu C Z. Small Methods, 2021, 5: 2000924.

[94]

Liu X X, Yang X S, Li K, Liu H F, Xiao R, Wang W Y, Wang C W, Wang S Q. Sens. Actuators B: Chem, 2020, 320: 128350.

[95]

Hong D G, Kim K, Jo E-J, Kim M-G. Anal. Chem., 2021, 93: 7925.

[96]

Liu X Y, Wang K, Cao B, Shen L S, Ke X, Cui D X, Zhong C M, Li W W. Anal. Chem., 2021, 93: 3626.

[97]

Vi T, Walkenfort B, Koenig M, Salehi M, Schluecker S. Angew. Chem. Int. Ed., 2019, 58: 442.

[98]

Zhan L, Granade T, Liu Y, Wei X, Youngpairoj A, Sullivan V, Johnson J, Bischof J. Microsyst. Nanoeng., 2020, 6: 54.

[99]

Loynachan C N, Thomas M R, Gray E R, Richards D A, Kim J, Miller B S, Brookes J C, Agarwal S, Chudasama V, McKendry R A, Stevens M M. ACS Nano, 2018, 12: 279.

[100]

Wang Q, Hou M L, Liu L P, Ma J, Zhang X G, Zhou Z X, Cao Y X. Biomed. Environ. Sci., 2020, 33: 174.

[101]

Sun A-L, Zhang Y-F, Sun G-P, Wang X-N, Tang D. Biosens. Bioelectron., 2017, 89: 659.

[102]

Liu Y T, Shen W, Li Q, Shu J N, Gao L F, Ma M M, Wang W, Cui H. Nat. Commun., 2017, 8: 1003.

[103]

Xu C, Huang J, Jiang Y, He S, Zhang C, Pu K. Nat. Biomed. Eng., 2023, 7: 298.

AI Summary AI Mindmap
PDF

179

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/