Robust Carbon-Carbon Cleavage in Lignin to Produce Phenol and Cyclohexanone

Lulin Wang , Xiaomeng Cheng , Minghua Dong , Sen Luan , Yuxuan Wu , Buxing Han , Huizhen Liu

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (1) : 29 -35.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (1) : 29 -35. DOI: 10.1007/s40242-024-3279-2
Article

Robust Carbon-Carbon Cleavage in Lignin to Produce Phenol and Cyclohexanone

Author information +
History +
PDF

Abstract

The challenge of breaking 5-5′ bonds in lignin, attributed to their high bonding energy, has prompted the development of a new transformation pathway. Biphenyl, an important model compound for lignin, contains these 5-5′ bonds, making it crucial to devise a strategy for their cleavage in lignin transformation. This study introduces a novel method for transforming biphenyl, involving selective hydrogenation to cyclohexylbenzene by Ni/SiO2 catalyst, followed by its oxidation to phenol and cyclohexanone through a radical mechanism. Results demonstrate that the catalysts with small particles have strong catalytic activity, while there is little difference in selectivity. The reason for the high selectivity of cyclohexylbenzene is due to the limited adsorption of cyclohexylbenzene on Ni/SiO2. This work presents a fresh approach to breaking resilient C—C bonds in lignin.

Keywords

Lignin / 5-5′ Bond / Ni/SiO2 / Phenol

Cite this article

Download citation ▾
Lulin Wang, Xiaomeng Cheng, Minghua Dong, Sen Luan, Yuxuan Wu, Buxing Han, Huizhen Liu. Robust Carbon-Carbon Cleavage in Lignin to Produce Phenol and Cyclohexanone. Chemical Research in Chinese Universities, 2024, 40(1): 29-35 DOI:10.1007/s40242-024-3279-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liao Y, Koelewijn S F, Bossche G V, Aelst J V, Bosch S V, Renders T, Navare K, Nicolaï T, Aelst V K, Maesen M, Matsushima H, Thevelein J M, Acker K V, Lagrain B, Verboekend D, Sels B F. Science, 2020, 367: 1385.

[2]

Ragauskas A J, Beckham G T, Biddy M J, Chandra R, Chen F, Davis M F, Davison B H, Dixon R A, Gilna P, Keller M, Langan P, Naskar A K, Saddler J N, Tschaplinski T J, Tuskan G A, Wyman C E. Science, 2014, 344: 1246843.

[3]

Dong L, Lin L, Han X, Si X, Liu X, Guo Y, Lu F, Rudić S, Parker S F, Yang S, Wang Y. Chem, 2019, 5: 1521.

[4]

Zhou H, Jing Y, Wang Y Q. Acta Phys.-Chim. Sin., 2022, 38: 2203016.

[5]

Zhou Y, Jin C, Li Y, Shen W. Nano Today, 2018, 20: 101.

[6]

Ouyang X, Huang X, Boot M, Hensen M. ChemSusChem, 2020, 13: 1705.

[7]

Kim S, Chmely S C, Nimlos M R, Bomble Y J, Foust T D, Paton R S, Beckham G T. J. Phys. Chem. Lett., 2011, 2: 2846.

[8]

Li C, Zhao X, Wang A, Huber G W, Zhang T. Chem. Rev., 2015, 115: 11559.

[9]

Wang M, Wang F. Adv. Mater., 2019, 31: 1901866.

[10]

Meng Q, Yan J, Liu H, Chen C, Li S, Shen X, Song J, Zheng L, Han B. Sci. Adv., 2019, 5: eaax6839.

[11]

Shuai L, Sitison J, Sadula S, Ding J, Thies M C, Saha B. ACS Catal., 2018, 8: 6507.

[12]

Wexler P. Encyclopedia of Toxicology, 2014, Amsterdam: Academic Press

[13]

Yang H, Hita I, Wang Z, Winkelman M, Deuss P J, Heeres H J. ACS Sustainable Chem. Eng., 2023, 11: 3170.

[14]

Wang M, Liu M, Li H, Zhao Z, Zhang X, Wang F. ACS Catal., 2018, 8: 6837.

[15]

Meng Q, Yan J, Wu R, Liu H, Sun Y, Wu N, Xiang J, Zheng L, Zhang J, Han B. Nat. Commun., 2021, 12: 4534.

[16]

Wang Y, Zhang Y, Wang K, Tan L, Chen S. J. Fuel Chem. Technol., 2021, 49: 97.

[17]

Yang F, Liu D, Zhao Y, Wang H, Han J, Ge Q, Zhu X. ACS Catal., 2018, 8: 1672.

[18]

Liu D, Li B, Chen J, Gridnev I D, Yan D, Zhang W. Nat. Commun., 2020, 11: 5935.

[19]

Yan P, Kennedy E, Stockenhuber M. Green Chemistry, 2021, 23: 4673.

[20]

Reske R, Mistry H, Behafarid F, Cuenya B R, Strasser P. J. Am. Chem. Soc., 2014, 136: 6978.

[21]

Dong C, Lian C, Hu S, Deng Z, Gong J, Li M, Liu H, Xing M, Zhang J. Nat. Commun., 2018, 9: 1252.

[22]

Wen J, Wang F, Zhang X. Chem. Soc. Rev., 2021, 50: 3211.

AI Summary AI Mindmap
PDF

239

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/