Recent Advances in 0D Ni/Co-based Hollow Electrocatalysts for Electrochemical Water Splitting

Wenjing Ge, Xiaocui Chen, Ruizhao Ma, Siyuan Zheng, Ningzhao Shang, Xiaoxian Zhao

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (3) : 437-450. DOI: 10.1007/s40242-024-3278-3
Review

Recent Advances in 0D Ni/Co-based Hollow Electrocatalysts for Electrochemical Water Splitting

Author information +
History +

Abstract

Electrochemical water splitting using renewable energy sources has been recognized as a sustainable way to produce hydrogen energy due to the characteristics of low-carbon and no pollution. However, the slow hydrogen/oxygen evolution reactions (HER/OER) seriously hinder the practical application of large-scale water splitting. In this paper, the 0D Ni/Co-based hollow material is discussed in detail because of adjustable morphology, low mass density and abundant active sites, which provides an effective solution for improving the HER/OER reaction kinetics. The synthesis methods of hollow materials, such as hard template, soft template and self-template are introduced. Afterward, catalysts with different structural designs of hollow structures are reviewed, including hollow single-shelled structure, hollow core-shelled structure, hollow double-shelled structure and hollow multi-shelled structure (HoMS) catalysts. Wherein, the research progress of the 0D Ni/Co-based HoMS electrocatalysts in recent years and their prominent performances in water splitting are highlighted. Finally, the challenges and development prospects of designing Ni/Co-based HoMS catalysts in water splitting in the future are discussed.

Keywords

Electrochemical water splitting / Morphological regulation / Hollow structure / Hollow multi-shelled structure (HoMS)

Cite this article

Download citation ▾
Wenjing Ge, Xiaocui Chen, Ruizhao Ma, Siyuan Zheng, Ningzhao Shang, Xiaoxian Zhao. Recent Advances in 0D Ni/Co-based Hollow Electrocatalysts for Electrochemical Water Splitting. Chemical Research in Chinese Universities, 2024, 40(3): 437‒450 https://doi.org/10.1007/s40242-024-3278-3

References

[1]
Zhang G W, Li Z Y, Zeng J R, Yu L, Zuo C Y, Wen P, Liu Y, Zhong L B, Chen H T, Qiu Y J. . Appl. Catal. B, Environ., 2022, 319: 121921,
CrossRef Google scholar
[2]
Li R W, Chen X Y, Cao B L, Ji RY, Deng Q H, Qu J, Wang K G, Zhu X B, Chao Y. . Chem. Eng. J., 2021, 409: 128240,
CrossRef Google scholar
[3]
Li P, Li W Q, Huang Y Q, Huang Q H, Tian S. . Small, 2023, 19: 2300725,
CrossRef Google scholar
[4]
Li J C, Zhang C, Zhang C, Ma H J, Guo Z Q, Zhong C L, Xu M, Wang X J, Wang Y Y, Ma H X, Qiu J S. . Adv. Mater., 2022, 34: 2203900,
CrossRef Google scholar
[5]
Peng X, Xie S, Wang X, Pi C R, Liu Z T, Gao B, Hu L S, Xiao W, Chu P K. . J. Mater. Chem. A., 2022, 10: 20761,
CrossRef Google scholar
[6]
Wang P, Luo Y Z, Zhang G X, Chen Z S, Ranganathan H, Sun S H, Shi Z C. . Nano-Micro. Lett., 2022, 14: 120,
CrossRef Google scholar
[7]
Chen J W, Chen H X, Yu T W, Li R C, Wang Y, Shao Z P, Song S Q. . Electrochem. Energy Rev., 2021, 4: 566,
CrossRef Google scholar
[8]
Zhou Z, Pei Z X, Wei L, Zhao S L, Jian X, Chen Y. . Energy Environ. Sci., 2020, 10: 3185,
CrossRef Google scholar
[9]
Zhou Q X, Xu C X, Hou J G, Ma W Q, Jian T Z, Yan S S, Liu H. . Nano-Micro Lett., 2023, 15: 95,
CrossRef Google scholar
[10]
Liu Y, Xu S J, Zheng X Y, Lu Y K, Li D, Jiang D L. . Colloid Interface Sci., 2022, 625: 457,
CrossRef Google scholar
[11]
Wang X, Huang H G, Qian J J, Li Y W, Shen K. . Appl. Catal. B, Environ., 2023, 325: 122295,
CrossRef Google scholar
[12]
Jiang S, Xiao T Y, Xu C, Wang S W, Peng H Q, Zhang W J, Liu B, Song Y F. . Small, 2023, 19: 2208027,
CrossRef Google scholar
[13]
Chen J W, Chen H X, Yu T W, Li R C, Wang Y, Shao Z P, Song S Q. . Electrochem. Energy Rev., 2021, 4: 566,
CrossRef Google scholar
[14]
Zhang Z, Ma X X, Tang J L. . J. Mater. Chem. A, 2018, 6: 12361,
CrossRef Google scholar
[15]
Wu D L, Liu B, Li R D, Chen D, Zeng W H, Zhao H Y, Yao Y T, Qin R, Yu J, Chen L, Zhang J N, Li B, Mu S C. . Small, 2023, 19: 2300030,
CrossRef Google scholar
[16]
Jian J, Yuan L, Li H, Liu H H, Zhang X H, Sun X J, Yuan H M, Feng S H. . Chem. Res. Chinese Universities, 2019, 35(2): 179,
CrossRef Google scholar
[17]
Chen P Z, Feng D M, Li K X, Tong Y. . Dalton Trans., 2022, 51: 16990,
CrossRef Google scholar
[18]
You B, Tang M T, Tsai C, Abild-Pedersen F, Zheng X L, Li H. . Adv. Mater., 2019, 31: 1807001,
CrossRef Google scholar
[19]
Wang J, Tran D T, Chang K, Prabhakaran S, Kim D H, Kim N H, Lee J H. . Energy Environ. Mater., 2022, 6: e12526,
CrossRef Google scholar
[20]
Ahasan Habib M, Mandavkar R, Lin S, Burse S, Khalid T, Hasan Joni M, Jeong J H, Lee J. . Chem. Eng. J., 2023, 462: 142177,
CrossRef Google scholar
[21]
Zhao T W, Wang Y, Karuturi S, Catchpole K, Zhang Q, Zhao C. . Carbon Energy, 2020, 2: 582,
CrossRef Google scholar
[22]
Zhang W Y, Chao Y G, Zhang W S, Zhou J H, Lv F, Wang K, Lin F X, Luo H, Li J, Tong M P. . Adv. Mater., 2021, 33: 2102576,
CrossRef Google scholar
[23]
Baek J, Hossain M D, Mukherjee P, Lee J, Winther K T, Leem J, Jiang Y, Chueh W C, Bajdich M, Zheng X. . Nat. Commun., 2023, 14: 5936,
CrossRef Google scholar
[24]
Chen R Z, Chen S H, Wu W, Zhu Y, Zhong J, Cheng N C. . ACS Energy Lett., 2023, 8: 3504,
CrossRef Google scholar
[25]
Yang X, Cheng J, Li H, Xu Y, Tu W F, Zhou J H. . Chem. Eng. J., 2023, 465: 142745,
CrossRef Google scholar
[26]
Wang C R, Zhang L, Dou Y H, Hencz L, Jiang L X, AlMamun M, Liu P R, Zhang S Q, Wang D, Zhao H J. . Energy Technol., 2020, 8: 2000008,
CrossRef Google scholar
[27]
Jeon S S, Kang P W, Klingenhof M, Lee H, Dionigi F, Strasser P. . ACS Catal., 2023, 13: 1186,
CrossRef Google scholar
[28]
Ni Y M, Shi D, Mao B G, Wang S H, Wang Y, Ahmad A, Sun J L, Song F, Cao M H, Hu C W. . Small, 2023, 19: 2302556,
CrossRef Google scholar
[29]
Chanda D, Kwon H, Meshesha M M, Gwon J S, Ju M, Kim K, Yang B L. . Appl. Catal. B, Environ., 2024, 340: 123187,
CrossRef Google scholar
[30]
Li X, Kou Z K, Xi S B, Zang W J, Yang T, Zhang L, Wang J H. . Nano Energy, 2020, 78: 105230,
CrossRef Google scholar
[31]
Huang W H, Li X M, Yang X F, Zhang H Y, Liu P B, Ma Y M, Lu X. . Chem. Eng. J., 2021, 420: 127595,
CrossRef Google scholar
[32]
Zhang L, Rong J, Yang Y, Zhu H, Yu X, Chen C, Cheng H M, Liu G. . Small, 2023, 19: 2207472,
CrossRef Google scholar
[33]
Lyu C, Cheng J R, Wang H C, Yang Y Q, Wu K L, Song P, Lau W M, Zheng J L, Zhu X X, Yang H Y. . Adv. Compos. Hybrid Mater., 2023, 6: 175,
CrossRef Google scholar
[34]
Xu D X, Liu S R, Zhang M Y, Xu L L, Gao H, Yao J. . Small, 2023, 19: 2300201,
CrossRef Google scholar
[35]
Xie X Q, Liu J, Gu C, Li J, Zhao Y, Liu C S. . J. Energy Chem., 2022, 64: 503,
CrossRef Google scholar
[36]
Jia H Y, Wang H Y, Yan F F, Zhang H C, Li Z, Wang J J. . Appl. Catal. B, Environ., 2023, 343: 123362,
CrossRef Google scholar
[37]
Gao X R, Liu X M, Zang W J, Dong H L, Pang Y J, Kou Z K, Wang P Y, Pan Z H, Wei S R, Mu S C, Wang J H. . Nano Energy, 2020, 78: 105355,
CrossRef Google scholar
[38]
Zhang K K, Mai W S, Li J, Li G Q, Tian L H, Hu W. . ACS Appl. Nano Mater., 2019, 2: 5931,
CrossRef Google scholar
[39]
Li P, Qiang F F, Tan X H, Li Z, Shi J, Liu S, Huang M H, Chen J W, Tian W Q, Wu J Y, Hu W, Wang H L. . Appl. Catal. B, Environ., 2024, 340: 123231,
CrossRef Google scholar
[40]
Zhang Z J, Guo J P, Sun S H, Sun Q, Zhao Y W, Zhang Y F, Yu Z Y, Li C S, Sun Y, Zhang M M, Jiang Y. . Rare Met., 2023, 42: 3607,
CrossRef Google scholar
[41]
Liu Q, Li M Y, Shi Y M, Liu C B, Yu Y F, Zhang B. . Rare Met., 2021, 41: 836,
CrossRef Google scholar
[42]
Chen M X, Li H J, Wu C L, Liang Y B, Qi J, Li J, Shangguan E, Zhang W, Cao R. . Adv. Funct. Mater., 2022, 32: 2206407,
CrossRef Google scholar
[43]
Qi Y X, Li T T, Hu Y J, Xiang J H, Shao W Q, Chen W H, Mu X Q, Liu S L, Chen C Y, Yu M, Mu S C. . Chem. Res. Chinese Universities, 2022, 38(5): 1282,
CrossRef Google scholar
[44]
Yang M, Zhang C H, Li N W, Luan D, Yu L, Lou X W. . Adv. Sci., 2022, 9: 2105135,
CrossRef Google scholar
[45]
Qi X R, Liu Y, Ma L L, Hou B X, Zhang H W, Li X H, Wang Y S, Hui Y Q, Wang R X, Bai CY, Liu H, Song J J, Zhao X X. . Rare Met., 2022, 41: 1637,
CrossRef Google scholar
[46]
Zhao X X, Wang J Y, Yu R B, Wang D. . J. Am. Chem. Soc., 2018, 140: 17114,
CrossRef Google scholar
[47]
Zong L B, Xu J, Jiang S Y, Zhao K, Wang Z M, Liu P R, Zhao H J, Chen J, Xing X R, Yu R B. . Adv. Mater, 2016, 29: 1604377,
CrossRef Google scholar
[48]
Ma L L, Hou B X, Zhang H, Yuan S T, Zhao B, Liu Y, Qi X R, Liu H Y, Zhang S H, Song J J, Zhao X X. . Chem. Eng. J., 2023, 453: 139735,
CrossRef Google scholar
[49]
Zhang H., Wang L., Ma L. L., Liu Y. H., Hou B. X., Shang N. Z., Zhang S. H., Song J. J., Chen S. Q., Zhao X. X., Adv. Sci., 2023, 2306168
[50]
Feng J N, Shi C, Dong H H, Zhang C Y, Liu W D, Liu Y, Wang T Y, Zhao X X, Chen S Q, Song J J. . J. Energy Chem., 2023, 86: 135,
CrossRef Google scholar
[51]
Liu J C, Ma L L, Li S, Hou L L, Qi X R, Wen Y Q, Hu G P, Wang N, Zhao Y, Zhao X X. . Rare Met., 2023, 42: 3378,
CrossRef Google scholar
[52]
Ma L L, Hou B X, Shang N Z, Zhang S H, Wang C, Zong L B, Song J J, Wang J Y, Zhao X X. . Mater. Chem. Front., 2021, 5: 4579,
CrossRef Google scholar
[53]
Fan C, Wu X D, Li M, Wang X, Zhu Y, Fu G T, Ma T Y, Tang Y W. . Chem. Eng. J., 2022, 431: 133829,
CrossRef Google scholar
[54]
Ma L L, Zhou X M, Sun J, Zhang P, Hou B X, Zhang S H, Shang N Z, Song J J, Ye H J, Shao H, Tang Y F, Zhao X X. . J. Energy Chem., 2023, 82: 268,
CrossRef Google scholar
[55]
Du J, Chen D X, Ding Y X, Wang L Q, Li F, Sun L C. . Small, 2023, 19: 2207611,
CrossRef Google scholar
[56]
Wang C, Shang H Y, Li J, Wang Y, Xu H, Wang C Y, Guo J, Du Y K. . Chem. Eng. J., 2021, 420: 129805,
CrossRef Google scholar
[57]
Zhang J, Hu L P, Cao W, Dong Y Y, Xia D B, Lin K F, Yang Y L. . Inorg. Chem., 2023, 62: 11690,
CrossRef Google scholar
[58]
Wang W, Zhang J, Lin K F, Wang J Q, Hu B Y, Dong Y Y, Xia D B, Yang Y L. . J. Energy Chem., 2023, 86: 308,
CrossRef Google scholar
[59]
Yu L, Yang J F, Guan B Y, Lu Y, Lou X W. . Angew. Chem. Int. Ed., 2017, 57: 172,
CrossRef Google scholar
[60]
Qian Q, Li Y P, Liu Y, Zhang G Q. . Appl. Catal. B Environ., 2020, 266: 118642,
CrossRef Google scholar
[61]
Zhu Y X, Zhang L, Zhang X, Li Z, Zha M, Li M, Hu G Z. . Chem. Eng. J., 2021, 405: 127002,
CrossRef Google scholar
[62]
Xia L C, Bo L L, Shi W P, Zhang Y N, Shen Y X, Ji X C, Guan X L, Wang Y X, Tong J H. . Chem. Eng. J., 2023, 452: 139250,
CrossRef Google scholar
[63]
Li J M, Kang Y M, Wei W L, Li X, Lei Z Q, Liu P. . Chem. Eng. J., 2021, 407: 127961,
CrossRef Google scholar
[64]
Guo Y N, Zhou X, Tang J, Tanaka S, Kaneti Y V, Na J, Jiang B, Yamauchi Y, Bando Y, Sugahara Y. . Nano Energy, 2020, 75: 104913,
CrossRef Google scholar
[65]
Ding X D, Pei L S, Huang Y X, Chen D Y, Xie Z L. . Small, 2022, 18: 2205547,
CrossRef Google scholar
[66]
Zhang Z. Q., Zhang Z., Chen X. B., Wang H. B., Lu H. Y., Shi Z., Feng S. H., CCS Chem., 2023, https://doi.org/10.31635/ccschem.023.202303256
[67]
Guo R K, Shi W, Liu W Z, Yang X, Xie Y, Yang T, Xiao J F. . Chem. Eng. J., 2022, 429: 132478,
CrossRef Google scholar
[68]
Li Y Y, Guo H R, Zhang Y, Zhang H T, Zhao J Y, Song R. . J. Mater. Chem. A, 2022, 10: 18989,
CrossRef Google scholar
[69]
Lu X F, Zhang S L, Sim W L, Gao S Y, Lou X W. . Angew. Chem. Int. Ed., 2021, 60: 22885,
CrossRef Google scholar
[70]
Luo J H, Wang J, Guo Y, Zhu J W, Jin H H, Zhang Z W, Zhang D J, Niu Y S, Hou S G, Du J M, He D P, Xiong Y L, Chen L, Mu S C, Huang Y. . Appl. Catal. B, Environ., 2022, 305: 121043,
CrossRef Google scholar
[71]
Liu Y, Lin Q, Chen X C, Meng X F, Hou B X, Liu H Y, Zhang S H, Shang N Z, Wang Z, Zhang C Y, Song J J, Zhao X X. . Energy Environ. Mater., 2023, 0: e12684,
CrossRef Google scholar
[72]
Song W J, Teng X, Niu Y L, Gong S Q, He X M, Chen Z F. . Chem. Eng. J., 2021, 409: 128227,
CrossRef Google scholar
[73]
Zhang K F, Deng Y Q, Wu Y H, Wang L L, Yan L F. . J. Colloid Interface Sci., 2023, 647: 246,
CrossRef Google scholar
[74]
Wen JG L, Li Y W, Gao J K. . Chem. Res. Chinese Universities, 2020, 36(4): 662,
CrossRef Google scholar
[75]
Wang S, Huo W, Feng H, Xie Z, Shang J K, Formo E V, Camargo P H C, Fang F, Jiang J. . Adv. Mater., 2023, 35: 2304494,
CrossRef Google scholar
[76]
Hou G Y, Jia X, Kang H J, Qiao X S, Liu Y, Li Y, Wu X H, Qin W. . Appl. Catal. B, Environ., 2022, 315: 121551,
CrossRef Google scholar
[77]
Hu L Y, Xiao R S, Wang X, Wang X X, Wang C L, Wen J, Gu W L, Zhu C Z. . Appl. Catal. B, Environ., 2021, 298: 120599,
CrossRef Google scholar
[78]
Niu Q, Yang M, Luan D, Li N W, Yu L, Lou X W. . Angew. Chem. Int. Ed., 2022, 61: e202213049,
CrossRef Google scholar
[79]
Kaneti Y V, Guo Y, Septiani N L W, Iqbal M, Jiang X, Takei T, Yuliarto B, Alothman Z A, Golberg D, Yamauchi Y. . Chem. Eng. J., 2021, 405: 126580,
CrossRef Google scholar
[80]
Shen L, Yu L, Wu H B, Yu X Y, Zhang X, Lou X W. . Nat. Commun., 2015, 6: 6694,
CrossRef Google scholar
[81]
Chong B, Xia M Y, Lv Y, Li H, Yan X Q, Lin B, Yang G D. . Chem. Eng. J., 2023, 465: 142853,
CrossRef Google scholar
[82]
Wei Y Z, Zhao D C, Wan J W, Wang D. . Trends Chem., 2022, 4: 1021,
CrossRef Google scholar
[83]
Ding D N, Shen K, Chen X D, Chen H R, Chen J Y, Fan T, Wu R F, Li Y W. . ACS Catal., 2018, 8: 7879,
CrossRef Google scholar
[84]
Li G D, Tang Z Y. . Nanoscale, 2014, 6: 3995,
CrossRef Google scholar
[85]
Ramesh S K, Ganesan V, Kim J. . ACS Appl. Energy Mater., 2021, 4: 12998,
CrossRef Google scholar
[86]
Wang J Y, Tang H J, Wang H, Yu R B, Wang D. . Mater. Chem. Front., 2017, 1: 414,
CrossRef Google scholar
[87]
Xu W, Bi R Y, Yang M, Wang J Y, Yu R B, Wang D. . Nano Res., 2023, 16: 12745,
CrossRef Google scholar
[88]
Zhao J L, Wang J Y, Bi R, Yang M, Wang J W, Jiang H Y, Gu L, Wang D. . Angew. Chem. Int. Ed., 2021, 60: 25719,
CrossRef Google scholar
[89]
Chang Z. H., Liu W. D., Feng J. N., Lin Z. H., Shi C., Wang T. Y., Lei Y. J., Zhao X. X., Song J. J., Wang G. X., Batteries Supercaps, 2023, e202300516
[90]
Zhao X L, Yang M, Wang J Y, Wang D. . Chem. Res. Chinese Universities, 2023, 39(4): 630,
CrossRef Google scholar
[91]
Wang J Y, Yang N L, Tang H J, Dong Z H, Jin Q, Yang M, Kisailus D, Zhao H J, Tang Z Y, Wang D. . Angew. Chem. Int. Ed., 2013, 52: 6417,
CrossRef Google scholar
[92]
Wang J Y, Tang H J, Zhang Y J, Ren H, Yu R B, Jin Q, Qi J, Mao D, Yang M, Wang Y, Liu P R, Zhang Y, Wen Y R, Gu L, Ma G H, Su Z G, Tang Z Y, Zhao H J, Wang D. . Nat. Energy, 2016, 1: 16050,
CrossRef Google scholar
[93]
Zhao X L, Yang M, Wang J Y, Wang D. . Chem. Res. Chinese Universities, 2023, 39(4): 630,
CrossRef Google scholar
[94]
Dong Z, Ren H, Hessel C M, Wang J Y, Yu R B, Jin Q, Yang M, Hu Z D, Chen Y F, Tang Z Y, Zhao H J, Wang D. . Adv. Mater., 2013, 26: 905,
CrossRef Google scholar
[95]
Wei Y, Wang J, Yu R, Wan J, Wang D. . Angew. Chem. Int. Ed., 2019, 58: 1422,
CrossRef Google scholar
[96]
Wang W, Zhang J, Lin K F, Wang J Q, Zhang X R, Hu B Y, Dong Y Y, Xia D B, Yang Y L. . Adv. Mater., 2023, 35: 2306140,
CrossRef Google scholar
[97]
Hu B Y, Zhang J, Yang Y L, Dong Y Y, Wang J W Q, Wang W, Lin K F, Xia D B, Fan R Q. . Nano Energy, 2023, 118: 109022,
CrossRef Google scholar
[98]
Han W S, Wang Y L, Wan J W, Wang D. . Chem. Res. Chinese Universities, 2022, 38(1): 117,
CrossRef Google scholar
[99]
Wang C, Wang J Y, Hu W P, Wang D. . Chem. Res. Chinese Universities, 2019, 36(1): 68,
CrossRef Google scholar
[100]
Zhao D C, Wei Y Z, Xiong J, Gao C S, Wang D. . Adv. Funct. Mater., 2023, 33: 2300681,
CrossRef Google scholar
[101]
Zhao D C, Yang N L, Wei Y, Jin Q, Wang Y L, He H Y, Yang Y, Han B, Zhang S J, Wang D. . Nat. Commun., 2020, 11: 4450,
CrossRef Google scholar
[102]
Yuan M W, Shi S L, Luo Y P, Yu Y, Wang S H, Chen C. . Chem. Res. Chinese Universities, 2022, 38(4): 999,
CrossRef Google scholar
[103]
Wang L, Wan J W, Zhao Y S, Yang N L, Wang D. . J. Am. Chem. Soc., 2019, 141: 2238,
CrossRef Google scholar
[104]
Wang H, Yang N L, Cui W, Wang J Y, Li Q H, Zhang Q H, Yu X Q, Gu L, Li J, Yu R B, Huang K K, Song S Y, Feng S H, Wang D. . Angew. Chem. Int. Ed., 2020, 59: 19691,
CrossRef Google scholar
[105]
Wang H, Mao D, Qi J, Zhang Q H, Ma X H, Song S Y, Gu L, Yu R B, Wang D. . Adv. Funct. Mater., 2019, 29: 1806588,
CrossRef Google scholar
[106]
Hou P, Li D, Wan J W, Zhang C H, Zhang X Q, Jiang H Y, Zhang Q H, Gu L, Wang D. . Angew. Chem. Int. Ed., 2021, 60: 6926,
CrossRef Google scholar
[107]
Ganesan V, Kim J. . Int. J. Hydrogen Energy, 2020, 45: 13290,
CrossRef Google scholar
[108]
Peng S J, Gong F, Li L L, Yu D S, Ji D X, Zhang T, Hu Z, Zhang Z Q, Chou S L, Du Y H, Ramakrishna S. . J. Am. Chem. Soc., 2018, 140: 13644,
CrossRef Google scholar
[109]
Li B, Wang J Y, Bi R Y, Yang N L, Wan J W, Jiang H Y, Gu L, Du J, Cao A M, Gao W, Wang D. . Adv. Mater., 2022, 34: 2200206,
CrossRef Google scholar
[110]
Huang T Y, Yang M, Wang J Y, Zhang S J, Du J, Wang D. . Chem. J. Chinese Universities, 2022, 43(1): 20220263
[111]
Zhang H, Wu Y Q, Wang X D, Li C P, Xiao Z Y, Liu Y R, Deng Y, Li Z J, Wang L. . Chem. Eng. J., 2023, 463: 142448,
CrossRef Google scholar
[112]
Du Y M, Zhang M J, Wang Z C, Liu Y R, Liu Y J, Geng Y L, Wang L. . J. Mater. Chem. A, 2019, 7: 8602,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/