Nano-crystallites Imine-based Copper(II) Complexes as Mimetics for Copper Oxidase Proteins: Synthesis, Characterization, DFT and Oxidase Mimicking Activity

Abdulrahman Alhadhrami, Abd El-Motaleb Ramadan, Ahmed Fathy

Chemical Research in Chinese Universities ›› 2024

Chemical Research in Chinese Universities ›› 2024 DOI: 10.1007/s40242-024-3273-8
Article

Nano-crystallites Imine-based Copper(II) Complexes as Mimetics for Copper Oxidase Proteins: Synthesis, Characterization, DFT and Oxidase Mimicking Activity

Author information +
History +

Abstract

Three tridentate imine ligands containing N2S donors were synthesized via Schiff condensation between derivatives of both amino triazine and 2-carbonyl pyridine. The reaction of these ligands with CuCI2 in a molar ratio of 1:1 provides three Cu(II) complexes with the general formula [CuL n·Cl2]. Analytical, electrical, magnetic, and spectroscopic studies were used to assign the molecular formulae of these metallic chelates. Density function theory (DFT) calculations confirmed the structural analysis results obtained from spectroscopic studies. The various characterization techniques used demonstrated the pentacoordinated slightly distorted square pyramidal structure for the present Cu(II) complexes 1, 2, and 3. Measurements of cyclic voltammetry were done in methanol to define the electrochemical behavior of the current Cu(II) complexes. The biomimetics of catechol oxidase (C.O.) and phenoxazinone synthase (PHS) have been studied in the aerobic oxidation of some phenolic substrates, such as 3,5-di-tert-butylcatechol (3,5-DTBCH2) and ortho-aminophenol (o-APH3). The three candidate oxidase mimetics showed promising activity in the order 3>1>2. The catalytic activity related to the structural properties of existing oxidase mimetics was discussed. The driving force (−ΔG°) controlling the redox reactions of the present biomolecules was calculated from the redox data of Cu(II) complexes 1, 2, and 3. The potential catalytic reaction pathway for the oxidation of the studied phenolic substrates was discussed.

Keywords

Nano-crystallite / Imine-based copper(II) complex / Mimetics of copper oxidase protein / Synthesis and characterization / Density function theory (DFT) calculation

Cite this article

Download citation ▾
Abdulrahman Alhadhrami, Abd El-Motaleb Ramadan, Ahmed Fathy. Nano-crystallites Imine-based Copper(II) Complexes as Mimetics for Copper Oxidase Proteins: Synthesis, Characterization, DFT and Oxidase Mimicking Activity. Chemical Research in Chinese Universities, 2024 https://doi.org/10.1007/s40242-024-3273-8

References

[1]
Bertini G, Gray H B, Gray H, Valentine J S, Stiefel E I, Stiefel E. Biological Inorganic Chemistry: Structure and Reactivity, 2007 1st Ed. Sausalito, California: University Science Books
[2]
Dey S K, Mukherjee A. Coord. Chem. Rev., 201, 310: 80.
CrossRef Google scholar
[3]
Reedijk J. Bioinorganic Catalysis, 1993 1st Ed. New York: Marcel Dekker
[4]
Borovansky J, Riley P A. Melanins and Melanosomes: Biosynthesis, Structure, Physiological and Pathological Functions, 2011, Weinheim: John Wiley & Sons.
CrossRef Google scholar
[5]
Barry C E, Nayar P G, Begley T P. Biochem., 1989, 28: 6323.
CrossRef Google scholar
[6]
Le Roes-Hill M, Goodwin C, Burton S. Trends Biotechnol., 2009, 27: 248.
CrossRef Google scholar
[7]
Ibrahim M M, Shaban S Y, Amer A A, Mohamed S F, Fathy A M, Al-Harbi S A, Ramadan A M. J. Biomol. Struct. Dyn., 2022, 40: 10677.
CrossRef Google scholar
[8]
Al-Nashawy A M A, Ramadan A M, Shaban S Y, Khalil S, Shebl M, Abdel-Galeil M M, Al-Harbie S A, Fathy A M. New J. Chem., 2023, 47: 3084.
CrossRef Google scholar
[9]
Bouroumane N, El Boutaybi M, El Kodadi M, Rachid T, Adyl O, Belkheir H, Mohamed A. Reac. Kinet. Mech. Cat., 2023, 136: 1545.
CrossRef Google scholar
[10]
Vallee B L. Proc. Natl. Acad. Sci., 1968, 59: 498.
CrossRef Google scholar
[11]
Vallee B L, Williams R J P. Chem. Br., 1968, 4: 397.
[12]
Holm R H, Solomon E I. Chem. Rev., 2004, 104: 347.
CrossRef Google scholar
[13]
Sellmann D, Prakash R, Heinemann F W. Eur. J. Inorg. Chem., 2004, 9: 1847.
CrossRef Google scholar
[14]
Santra B K, Reddy P A N, Nethaji M, Chakravarty A R. J. Chem. Soc., Dalton Trans., 2001, 24: 3553.
CrossRef Google scholar
[15]
Mandal S, Naskar R, Mondal A S, Bera B, Mondal T K. Dalton Trans., 2023, 52: 5983.
CrossRef Google scholar
[16]
El Boutaybi M, Bouroumane N, Azzouzi M, Bacroume S, Touzani R, Bahari Z. Mater. Today: Proc., 2023, 72: 3514.
[17]
Sha M, Rao L, Xu W, Qin Y, Su R, Wu Y, Fang Q, Wang H, Cui X, Zheng L, Gu W, Zhu C. Nano Lett., 2023, 23: 701.
CrossRef Google scholar
[18]
Reja S, Sarkar D, Sarkar K, Mukherjee D, Fayaz T K S, Sanphui P, Das R K. Inorganica Chim. Acta, 2024, 560: 121809.
CrossRef Google scholar
[19]
Chakraborty P., Chatterjee A., Mandal R., Kumar B., Mandal S., Dey S. K., Struct. Chem., 2023, 1
[20]
Sahin R, Kejriwal A, Das R K. Catal. Ind., 2023, 15: 108.
CrossRef Google scholar
[21]
Selvakumaran B, Murali M, Sathya V. Inorganica Chimica Acta, 2023, 553: 121514.
CrossRef Google scholar
[22]
Boutaybi M E, Mouadili A, Oussaid A, Mazières S, Touzani R, Bahari Z. J. Iran. Chem. Soc., 2023, 20: 961.
CrossRef Google scholar
[23]
Dornow A, Menzel H, Marx P. Chem. Ber., 1964, 97: 2173.
CrossRef Google scholar
[24]
Geary W J. Coord. Chem. Rev., 1971, 7: 81.
CrossRef Google scholar
[25]
Coats A W, Redfern J P. Nature, 1964, 201: 68.
CrossRef Google scholar
[26]
Horowitz H H, Metzger G. Anal. Chem., 1963, 35: 1464.
CrossRef Google scholar
[27]
KarapJnar E, Gubbuk I H, Taner B, Deveci P, Ozcan E. J. Chem., 2013, 2013: 548067.
[28]
Borah D, Baruah M K. Fuel Process. Technol., 2001, 72: 83.
CrossRef Google scholar
[29]
Ahmed I T. J. Anal. Appl. Pyrolysis, 2007, 80: 383.
CrossRef Google scholar
[30]
Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 1986, New York: Wiley
[31]
Singh K, Barwa M S, Tyagi P. Eur. J. Med. Chem., 2007, 42: 394.
CrossRef Google scholar
[32]
Radecka-Paryzek W, Patroniak-Krzyminiewska V, Litkowska H. Polyhedron, 1998, 17: 1477.
CrossRef Google scholar
[33]
Lever A B P. Inorganic Electronic Spectroscopy, 1984 2nd Ed. New York: Elsevier
[34]
Onawumi O O E, Faboya O O P, Odunola O A, Prasad T K, Pajasekharan M V. Polyhedron, 2008, 27: 113.
CrossRef Google scholar
[35]
Ramadan A M, Shaban S Y, Ibrahim M M, Abdel-Rahman A A-H, Sallam S A, Al-Harbie S A, Omar W. New J. Chem, 2020, 44: 6331.
CrossRef Google scholar
[36]
Shaban S Y, Ramadan A M, Ibrahim M M, El-Shami F I, van Eldik R. Inorg. Chem. Acta, 2019, 486: 608.
CrossRef Google scholar
[37]
Ramadan A M, Shaban S Y, Ibrahim M M, Sallam S A, El-Shami F I, Al-Juaid S. J. Mater. Sci., 2020, 55: 6457.
CrossRef Google scholar
[38]
Altomare A, Cuocci C, Giacovazzo C, Moliterni A, Rizzi R, Corriero N, Falcicchio A. J. Appl. Crystallogr., 2013, 46: 1231.
CrossRef Google scholar
[39]
Addison A W, Rao T N, Reedijk J, van Rijn J, Verschoor G C. J. Chem. Soc., Dalton Trans., 1984, 7: 1349.
CrossRef Google scholar
[40]
Shanmugaiah M K, Palsamy K M, Lokesh R, Gandhi I, Mitu L, Jegathalaprathaban R, Gurusamy R. Appl. Organometal. Chem., 2018, 33: e4762.
CrossRef Google scholar
[41]
Frisch M J, Trucks G W, Schlegel H B. Gaussian 09, Revision A 02, 2009, Wallingford: Gaussian, Inc.
[42]
Becke A D. J. Chem. Phys., 1993, 98: 5648.
CrossRef Google scholar
[43]
Lee C, Yang W, Parr R G. Phys. Rev. B, 1988, 37: 785.
CrossRef Google scholar
[44]
Stevens P J, Devlin F J, Chablowski C F, Frisch M J. J. Phys. Chem., 1994, 98: 11623.
CrossRef Google scholar
[45]
Ituen E B, Asuquo J E, Ogede O R. Int. J. Comput. Theor. Chem., 2014, 2: 14.
CrossRef Google scholar
[46]
Avdeef A, Fackler J P. Inorg. Chem., 1975, 14: 2002.
CrossRef Google scholar
[47]
Kepert D L. Inorg. Chem., 1972, 11: 1561.
CrossRef Google scholar
[48]
Hollstein U. Chem. Rev., 1974, 74: 625.
CrossRef Google scholar
[49]
Malachowski M R, Dorsey B, Sackett J G, Kelly R S, Ferko A L, Hardin R N. Inorg. Chim. Acta, 199, 249: 85.
CrossRef Google scholar
[50]
Fernandes C, Neves A, Bortoluzzi A J, Mangrich A S, Rentschler E, Szpoganicz B, Schwingel E. Inorg. Chim. Acta, 2001, 320: 12.
CrossRef Google scholar
[51]
Fathy A M, Hessien M M, Ibrahim M M, Ramadan A M. J.Mol. St., 2022, 1250: 131809.
CrossRef Google scholar
[52]
Sengupta S, Mongal B N, Das S, Panda T K, Mandal T K, Fleck M, Chattopadhyay S K, Naskar S. J. Coord. Chem., 2018, 71: 1214.
CrossRef Google scholar
[53]
Zaki A B, El-Sheikh M Y, Evans J, El-Safty S A. Polyhedron, 2000, 19: 1317.
CrossRef Google scholar
[54]
Kaizer J, Csonka R, Speier G. J. Mol. Catal. A: Chemical, 2002, 180: 91.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/