Nano-crystallites Imine-based Copper(II) Complexes as Mimetics for Copper Oxidase Proteins: Synthesis, Characterization, DFT and Oxidase Mimicking Activity

Abdulrahman Alhadhrami , Abd El-Motaleb Ramadan , Ahmed Fathy

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (6) : 1068 -1081.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (6) : 1068 -1081. DOI: 10.1007/s40242-024-3273-8
Article

Nano-crystallites Imine-based Copper(II) Complexes as Mimetics for Copper Oxidase Proteins: Synthesis, Characterization, DFT and Oxidase Mimicking Activity

Author information +
History +
PDF

Abstract

Three tridentate imine ligands containing N2S donors were synthesized via Schiff condensation between derivatives of both amino triazine and 2-carbonyl pyridine. The reaction of these ligands with CuCI2 in a molar ratio of 1:1 provides three Cu(II) complexes with the general formula [CuL n·Cl2]. Analytical, electrical, magnetic, and spectroscopic studies were used to assign the molecular formulae of these metallic chelates. Density function theory (DFT) calculations confirmed the structural analysis results obtained from spectroscopic studies. The various characterization techniques used demonstrated the pentacoordinated slightly distorted square pyramidal structure for the present Cu(II) complexes 1, 2, and 3. Measurements of cyclic voltammetry were done in methanol to define the electrochemical behavior of the current Cu(II) complexes. The biomimetics of catechol oxidase (C.O.) and phenoxazinone synthase (PHS) have been studied in the aerobic oxidation of some phenolic substrates, such as 3,5-di-tert-butylcatechol (3,5-DTBCH2) and ortho-aminophenol (o-APH3). The three candidate oxidase mimetics showed promising activity in the order 3>1>2. The catalytic activity related to the structural properties of existing oxidase mimetics was discussed. The driving force (−ΔG°) controlling the redox reactions of the present biomolecules was calculated from the redox data of Cu(II) complexes 1, 2, and 3. The potential catalytic reaction pathway for the oxidation of the studied phenolic substrates was discussed.

Keywords

Nano-crystallite / Imine-based copper(II) complex / Mimetics of copper oxidase protein / Synthesis and characterization / Density function theory (DFT) calculation

Cite this article

Download citation ▾
Abdulrahman Alhadhrami, Abd El-Motaleb Ramadan, Ahmed Fathy. Nano-crystallites Imine-based Copper(II) Complexes as Mimetics for Copper Oxidase Proteins: Synthesis, Characterization, DFT and Oxidase Mimicking Activity. Chemical Research in Chinese Universities, 2024, 40(6): 1068-1081 DOI:10.1007/s40242-024-3273-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bertini G, Gray H B, Gray H, Valentine J S, Stiefel E I, Stiefel E. Biological Inorganic Chemistry: Structure and Reactivity, 2007 1st Ed. Sausalito, California: University Science Books

[2]

Dey S K, Mukherjee A. Coord. Chem. Rev., 2016, 310: 80

[3]

Reedijk J. Bioinorganic Catalysis, 1993 1st Ed. New York: Marcel Dekker

[4]

Borovansky J, Riley P A. Melanins and Melanosomes: Biosynthesis, Structure, Physiological and Pathological Functions, 2011, Weinheim: John Wiley & Sons

[5]

Barry C E, Nayar P G, Begley T P. Biochem., 1989, 28: 6323

[6]

Le Roes-Hill M, Goodwin C, Burton S. Trends Biotechnol., 2009, 27: 248

[7]

Ibrahim M M, Shaban S Y, Amer A A, Mohamed S F, Fathy A M, Al-Harbi S A, Ramadan A M. J. Biomol. Struct. Dyn., 2022, 40: 10677

[8]

Al-Nashawy A M A, Ramadan A M, Shaban S Y, Khalil S, Shebl M, Abdel-Galeil M M, Al-Harbie S A, Fathy A M. New J. Chem., 2023, 47: 3084

[9]

Bouroumane N, El Boutaybi M, El Kodadi M, Rachid T, Adyl O, Belkheir H, Mohamed A. Reac. Kinet. Mech. Cat., 2023, 136: 1545

[10]

Vallee B L. Proc. Natl. Acad. Sci., 1968, 59: 498

[11]

Vallee B L, Williams R J P. Chem. Br., 1968, 4: 397

[12]

Holm R H, Solomon E I. Chem. Rev., 2004, 104: 347

[13]

Sellmann D, Prakash R, Heinemann F W. Eur. J. Inorg. Chem., 2004, 9: 1847

[14]

Santra B K, Reddy P A N, Nethaji M, Chakravarty A R. J. Chem. Soc., Dalton Trans., 2001, 24: 3553

[15]

Mandal S, Naskar R, Mondal A S, Bera B, Mondal T K. Dalton Trans., 2023, 52: 5983

[16]

El Boutaybi M, Bouroumane N, Azzouzi M, Bacroume S, Touzani R, Bahari Z. Mater. Today: Proc., 2023, 72: 3514

[17]

Sha M, Rao L, Xu W, Qin Y, Su R, Wu Y, Fang Q, Wang H, Cui X, Zheng L, Gu W, Zhu C. Nano Lett., 2023, 23: 701

[18]

Reja S, Sarkar D, Sarkar K, Mukherjee D, Fayaz T K S, Sanphui P, Das R K. Inorganica Chim. Acta, 2024, 560: 121809

[19]

Chakraborty P., Chatterjee A., Mandal R., Kumar B., Mandal S., Dey S. K., Struct. Chem., 2023, 1

[20]

Sahin R, Kejriwal A, Das R K. Catal. Ind., 2023, 15: 108

[21]

Selvakumaran B, Murali M, Sathya V. Inorganica Chimica Acta, 2023, 553: 121514

[22]

Boutaybi M E, Mouadili A, Oussaid A, Mazières S, Touzani R, Bahari Z. J. Iran. Chem. Soc., 2023, 20: 961

[23]

Dornow A, Menzel H, Marx P. Chem. Ber., 1964, 97: 2173

[24]

Geary W J. Coord. Chem. Rev., 1971, 7: 81

[25]

Coats A W, Redfern J P. Nature, 1964, 201: 68

[26]

Horowitz H H, Metzger G. Anal. Chem., 1963, 35: 1464

[27]

KarapJnar E, Gubbuk I H, Taner B, Deveci P, Ozcan E. J. Chem., 2013, 2013: 548067

[28]

Borah D, Baruah M K. Fuel Process. Technol., 2001, 72: 83

[29]

Ahmed I T. J. Anal. Appl. Pyrolysis, 2007, 80: 383

[30]

Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 1986, New York: Wiley

[31]

Singh K, Barwa M S, Tyagi P. Eur. J. Med. Chem., 2007, 42: 394

[32]

Radecka-Paryzek W, Patroniak-Krzyminiewska V, Litkowska H. Polyhedron, 1998, 17: 1477

[33]

Lever A B P. Inorganic Electronic Spectroscopy, 1984 2nd Ed. New York: Elsevier

[34]

Onawumi O O E, Faboya O O P, Odunola O A, Prasad T K, Pajasekharan M V. Polyhedron, 2008, 27: 113

[35]

Ramadan A M, Shaban S Y, Ibrahim M M, Abdel-Rahman A A-H, Sallam S A, Al-Harbie S A, Omar W. New J. Chem, 2020, 44: 6331

[36]

Shaban S Y, Ramadan A M, Ibrahim M M, El-Shami F I, van Eldik R. Inorg. Chem. Acta, 2019, 486: 608

[37]

Ramadan A M, Shaban S Y, Ibrahim M M, Sallam S A, El-Shami F I, Al-Juaid S. J. Mater. Sci., 2020, 55: 6457

[38]

Altomare A, Cuocci C, Giacovazzo C, Moliterni A, Rizzi R, Corriero N, Falcicchio A. J. Appl. Crystallogr., 2013, 46: 1231

[39]

Addison A W, Rao T N, Reedijk J, van Rijn J, Verschoor G C. J. Chem. Soc., Dalton Trans., 1984, 7: 1349

[40]

Shanmugaiah M K, Palsamy K M, Lokesh R, Gandhi I, Mitu L, Jegathalaprathaban R, Gurusamy R. Appl. Organometal. Chem., 2018, 33: e4762

[41]

Frisch M J, Trucks G W, Schlegel H B. Gaussian 09, Revision A 02, 2009, Wallingford: Gaussian, Inc.

[42]

Becke A D. J. Chem. Phys., 1993, 98: 5648

[43]

Lee C, Yang W, Parr R G. Phys. Rev. B, 1988, 37: 785

[44]

Stevens P J, Devlin F J, Chablowski C F, Frisch M J. J. Phys. Chem., 1994, 98: 11623

[45]

Ituen E B, Asuquo J E, Ogede O R. Int. J. Comput. Theor. Chem., 2014, 2: 14

[46]

Avdeef A, Fackler J P. Inorg. Chem., 1975, 14: 2002

[47]

Kepert D L. Inorg. Chem., 1972, 11: 1561

[48]

Hollstein U. Chem. Rev., 1974, 74: 625

[49]

Malachowski M R, Dorsey B, Sackett J G, Kelly R S, Ferko A L, Hardin R N. Inorg. Chim. Acta, 1996, 249: 85

[50]

Fernandes C, Neves A, Bortoluzzi A J, Mangrich A S, Rentschler E, Szpoganicz B, Schwingel E. Inorg. Chim. Acta, 2001, 320: 12

[51]

Fathy A M, Hessien M M, Ibrahim M M, Ramadan A M. J.Mol. St., 2022, 1250: 131809

[52]

Sengupta S, Mongal B N, Das S, Panda T K, Mandal T K, Fleck M, Chattopadhyay S K, Naskar S. J. Coord. Chem., 2018, 71: 1214

[53]

Zaki A B, El-Sheikh M Y, Evans J, El-Safty S A. Polyhedron, 2000, 19: 1317

[54]

Kaizer J, Csonka R, Speier G. J. Mol. Catal. A: Chemical, 2002, 180: 91

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/