Progress and Challenges of Water-soluble NIR-II Organic Fluorophores for Fluorescence Imaging in vivo

Yuxin Xie, Zuojia Qin, Ming Qian, Tianbing Ren, Lin Yuan

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (2) : 190-201. DOI: 10.1007/s40242-024-3264-9
Review

Progress and Challenges of Water-soluble NIR-II Organic Fluorophores for Fluorescence Imaging in vivo

Author information +
History +

Abstract

The small-molecule fluorophores for the second near-infrared (NIR-II, 1000–1700 nm) window have attracted increasing attention in basic scientific research and preclinical practice owing to their deep-photo penetration, minimal physiological toxicity and simplicity of chemical modification. However, most of the reported small-molecule NIR-II fluorophores suffered from poor water solubility, which can easily cause organ toxicity. In addition, the aggregation caused by their poor water solubility in the aqueous solution would also result in weak fluorescence of these NIR-II fluorophores. Thus, it is highly desirable and valuable to develop water-soluble small-molecule NIR-II fluorophores with excellent photophysical properties for high-contrast in vivo imaging. In this review, we summarize the recent research advances in water-soluble small-molecule NIR-II fluorophores and highlight the representative bioimaging applications. Moreover, the potential challenges and perspectives of water-soluble small-molecule NIR-II fluorophores are discussed as well. We anticipate this review can help researchers to grab the latest information of water-soluble small-molecule fluorophores for NIR-II imaging, sequentially boosting their further development.

Keywords

Organic fluorophore / Fluorescent imaging / Imaging reagent / Fluorescent probe / The second near-infrared (NIR-II) imaging

Cite this article

Download citation ▾
Yuxin Xie, Zuojia Qin, Ming Qian, Tianbing Ren, Lin Yuan. Progress and Challenges of Water-soluble NIR-II Organic Fluorophores for Fluorescence Imaging in vivo. Chemical Research in Chinese Universities, 2024, 40(2): 190‒201 https://doi.org/10.1007/s40242-024-3264-9

References

[1]
Hu Z, Fang C, Li B, Zhang Z, Cao C, Cai M, Su S, Sun X, Shi X, Li C, Zhou T, Zhang Y, Chi C, He P, Xia X, Chen Y, Gambhir S S, Cheng Z, Tian J. . Nat. Biomed. Eng., 2020, 4: 259,
CrossRef Google scholar
[2]
Thomas J A. . Chem. Soc. Rev., 2015, 44: 4494,
CrossRef Google scholar
[3]
Li C, Pang Y, Xu Y, Lu M, Tu L, Li Q, Sharma A, Guo Z, Li X, Sun Y. . Chem. Soc. Rev., 2023, 52: 4392,
CrossRef Google scholar
[4]
Pratt E C, Skubal M, McLarney B, Causa-Andrieu P, Das S, Sawan P, Araji A, Riedl C, Vyas K, Tuch D, Grimm J. . Nat. Biomed. Eng., 2022, 6: 559,
CrossRef Google scholar
[5]
Chen L, Lyu Y, Zhang X, Zheng L, Li Q, Ding D, Chen F, Liu Y, Li W, Zhang Y, Huang Q, Wang Z, Xie T, Zhang Q, Sima Y, Li K, Xu S, Ren T, Xiong M, Wu Y, Song J, Yuan L, Yang H, Zhang X-B, Tan W. . Sci. China Chem., 2023, 66: 1336,
CrossRef Google scholar
[6]
Ou Y-F, Ren T-B, Yuan L, Zhang X-B. . Chem.Biomed.Imaging, 2023, 1: 220,
CrossRef Google scholar
[7]
Chen Y, Wang S, Zhang F. . Nat. Rev. Bioeng., 2023, 1: 60,
CrossRef Google scholar
[8]
Xu Y, Li C, An J, Ma X, Yang J, Luo L, Deng Y, Kim J S, Sun Y. . Sci. China Chem., 2023, 66: 155,
CrossRef Google scholar
[9]
Tu L, Li C, Xiong X, Kim H J, Li Q, Mei L, Li J, Liu S, Kim S J, Sun Y. . Angew. Chem. Int. Edit., 2023, 62: e202301560,
CrossRef Google scholar
[10]
Welsher K, Liu Z, Sherlock S P, Robinson J T, Chen Z, Daranciang D, Dai H. . Nat. Nanotechnol., 2009, 4: 773,
CrossRef Google scholar
[11]
Qin Z, Ren T-B, Zhou H, Zhang X, He L, Li Z, Zhang X-B, Yuan L. . Angew. Chem. Int. Ed., 2022, 61: e202201541,
CrossRef Google scholar
[12]
Wan H, Du H, Wang F, Dai H. . Adv. Funct. Mater., 2019, 29: 1900566,
CrossRef Google scholar
[13]
He S, Song J, Qu J, Cheng Z. . Chem. Soc. Rev., 2018, 47: 4258,
CrossRef Google scholar
[14]
Soo Choi H, Liu W, Misra P, Tanaka E, Zimmer J P, Itty Ipe B, Bawendi M G, Frangioni J V. . Nat. Biotechnol., 2007, 25: 1165,
CrossRef Google scholar
[15]
Lorenzo I, Serra-Prat M, Yébenes J C. . Nutrients, 2019, 11: 1857,
CrossRef Google scholar
[16]
Cheng Q, Tian Y, Dang H, Teng C, Xie K, Yin D, Yan L. . Adv. Healthc. Mater., 2022, 11: 2101697,
CrossRef Google scholar
[17]
Li B, Lu L, Zhao M, Lei Z, Zhang F. . Angew. Chem. Int. Edit., 2018, 57: 7483,
CrossRef Google scholar
[18]
Yao C, Chen Y, Zhao M, Wang S, Wu B, Yang Y, Yin D, Yu P, Zhang H, Zhang F. . Angew. Chem. Int. Edit., 2022, 61: e202114273,
CrossRef Google scholar
[19]
Li B, Zhao M, Feng L, Dou C, Ding S, Zhou G, Lu L, Zhang H, Chen F, Li X, Li G, Zhao S, Jiang C, Wang Y, Zhao D, Cheng Y, Zhang F. . Nat. Commun., 2020, 11: 3102,
CrossRef Google scholar
[20]
Antaris A L, Chen H, Diao S, Ma Z, Zhang Z, Zhu S, Wang J, Lozano A X, Fan Q, Chew L, Zhu M, Cheng K, Hong X, Dai H, Cheng Z. . Nat. Commun., 2017, 8: 15269,
CrossRef Google scholar
[21]
Cheng P, Pu K. . Nat. Rev. Mater., 2021, 6: 1095,
CrossRef Google scholar
[22]
Cosco E D, Caram J R, Bruns O T, Franke D, Day R A, Farr E P, Bawendi M G, Sletten E M. . Angew. Chem. Int. Edit., 2017, 56: 13126,
CrossRef Google scholar
[23]
Cosco E D, Spearman A L, Ramakrishnan S, Lingg J G P, Saccomano M, Pengshung M, Arús B A, Wong K C Y, Glasl S, Ntziachristos V, Warmer M, McLaughlin R R, Bruns O T, Sletten E M. . Nat. Chem., 2020, 12: 1123,
CrossRef Google scholar
[24]
Bhalani D V, Nutan B, Kumar A, Singh Chandel A K. . Biomedicines, 2022, 10: 2055,
CrossRef Google scholar
[25]
Tenchov R, Bird R, Curtze A E, Zhou Q. . ACS Nano, 2021, 15: 16982,
CrossRef Google scholar
[26]
Yang Y, Sun C, Wang S, Yan K, Zhao M, Wu B, Zhang F. . Angew. Chem. Int. Edit., 2022, 61: e202117436,
CrossRef Google scholar
[27]
Zeng Z, Ouyang J, Sun L, Zeng C, Zeng F, Wu S. . Anal. Chem., 2020, 92: 9257,
CrossRef Google scholar
[28]
Bai L, Hu Z, Han T, Wang Y, Xu J, Jiang G, Feng X, Sun B, Liu X, Tian R, Sun H, Zhang S, Chen X, Zhu S. . Theranostics, 2022, 12: 4536,
CrossRef Google scholar
[29]
Zhang Y., Jia Y., Zhu S., SmartMat, 2023, DOI: https://doi.org/10.1002/smm2.1245
[30]
Lei Z, Sun C, Pei P, Wang S, Li D, Zhang X, Zhang F. . Angew. Chem. Int. Edit., 2019, 58: 8166,
CrossRef Google scholar
[31]
Tao Z, Hong G, Shinji C, Chen C, Diao S, Antaris A L, Zhang B, Zou Y, Dai H. . Angew. Chem. Int. Edit., 2013, 52: 13002,
CrossRef Google scholar
[32]
Shi Y, Yuan W, Liu Q, Kong M, Li Z, Feng W, Hu K, Li F. . ACS Mater. Lett., 2019, 1: 418,
CrossRef Google scholar
[33]
Zhao M, Wang J, Lei Z, Lu L, Wang S, Zhang H, Li B, Zhang F. . Angew. Chem. Int. Edit., 2021, 60: 5091,
CrossRef Google scholar
[34]
Wang S, Fan Y, Li D, Sun C, Lei Z, Lu L, Wang T, Zhang F. . Nat. Commun., 2019, 10: 1058,
CrossRef Google scholar
[35]
Lu X, Zhu Y, Bai R, Wu Z, Qian W, Yang L, Cai R, Yan H, Li T, Pandey V, Liu Y, Lobie P E, Chen C, Zhu T. . Nat. Nanotechnol., 2019, 14: 719,
CrossRef Google scholar
[36]
de Castro C E, Panico K, Stangherlin L M, Ribeiro C A S, da Silva M C C, Carneiro-Ramos M S, Dal-Bó A G, Giacomelli F C. . Bioconjugate Chem., 2020, 31: 2638,
CrossRef Google scholar
[37]
Huang J, Xie C, Zhang X, Jiang Y, Li J, Fan Q, Pu K. . Angew. Chem. Int. Edit., 2019, 58: 15120,
CrossRef Google scholar
[38]
Ouyang J, Sun L, Zeng F, Wu S. . Analyst, 2022, 147: 410,
CrossRef Google scholar
[39]
Chen Y, Pei P, Lei Z, Zhang X, Yin D, Zhang F. . Angew. Chem. Int. Edit., 2021, 60: 15809,
CrossRef Google scholar
[40]
Yan D, Li T, Yang Y, Niu N, Wang D, Ge J, Wang L, Zhang R, Wang D, Tang B Z. . Adv. Mater., 2022, 34: 2206643,
CrossRef Google scholar
[41]
Sun Y, Qu C, Chen H, He M, Tang C, Shou K, Hong S, Yang M, Jiang Y, Ding B, Xiao Y, Xing L, Hong X, Cheng Z. . Chem. Sci., 2016, 7: 6203,
CrossRef Google scholar
[42]
Bandi V G, Luciano M P, Saccomano M, Patel N L, Bischof T S, Lingg J G P, Tsrunchev P T, Nix M N, Ruehle B, Sanders C, Riffle L, Robinson C M, Difilippantonio S, Kalen J D, Resch-Genger U, Ivanic J, Bruns O T, Schnermann M J. . Nat. Methods, 2022, 19: 353,
CrossRef Google scholar
[43]
Li D-H, Gamage R S, Oliver A G, Patel N L, Muhammad Usama S, Kalen J D, Schnermann M J, Smith B D. . Angew. Chem. Int. Edit., 2023, 62: e202305062,
CrossRef Google scholar
[44]
Choi H S, Nasr K, Alyabyev S, Feith D, Lee J H, Kim S H, Ashitate Y, Hyun H, Patonay G, Strekowski L, Henary M, Frangioni J V. . Angew. Chem. Int. Edit., 2011, 50: 6258,
CrossRef Google scholar
[45]
Jia S, Lin E Y, Mobley E B, Lim I, Guo L, Kallepu S, Low P S, Sletten E M. . Chem, 2023, 9: 3648,
CrossRef Google scholar
[46]
Ding B, Xiao Y, Zhou H, Zhang X, Qu C, Xu F, Deng Z, Cheng Z, Hong X. . J. Med. Chem., 2019, 62: 2049,
CrossRef Google scholar
[47]
de Valk K S, Handgraaf H J, Deken M M, Sibinga Mulder B G, Valentijn A R, Terwisscha van Scheltinga A G, Kuil J, van Esdonk M J, Vuijk J, Bevers R F, Peeters K C, Holman F A, Frangioni J V, Burggraaf J, Vahrmeijer A L. . Nat. Commun., 2019, 10: 3118,
CrossRef Google scholar
[48]
Choi H S, Gibbs S L, Lee J H, Kim S H, Ashitate Y, Liu F, Hyun H, Park G, Xie Y, Bae S, Henary M, Frangioni J V. . Nat. Biotechnol., 2013, 31: 148,
CrossRef Google scholar
[49]
Wang H, Kang H, Dinh J, Yokomizo S, Stiles WR, Tully M, Cardenas K, Srinivas S, Ingerick J, Ahn S, Bao K, Choi H S. . Biomater. Res., 2022, 26: 51,
CrossRef Google scholar
[50]
Chen S, Brunskill E W, Potter S S, Dexheimer P J, Salomonis N, Aronow B J, Hong C I, Zhang T, Kopan R. . Dev. Cell, 2015, 35: 49,
CrossRef Google scholar
[51]
Perazella M A, Coca S G. . Nat. Rev. Nephrol., 2013, 9: 484,
CrossRef Google scholar
[52]
Chen C, Tian R, Zeng Y, Chu C, Liu G. . Bioconjugate Chem., 2020, 31: 276,
CrossRef Google scholar
[53]
Chen Z, Zhang Z, Zeng F, Wu S. . Chem. Biomed. Imaging, 2023, 1: 716,
CrossRef Google scholar
[54]
Zeng C, Tan Y, Sun L, Long Y, Zeng F, Wu S. . ACS Appl. Mater. Interfaces, 2023, 15: 17664,
CrossRef Google scholar
[55]
Ridker P M, Cook N R. . Lancet, 2013, 382: 1762,
CrossRef Google scholar
[56]
Dong Y, Lu X, Li Y, Chen W, Yin L, Zhao J, Hu X, Li X, Lei Z, Wu Y, Chen H, Luo X, Qian X, Yang Y. . Chin. Chem. Lett., 2023, 34: 108154,
CrossRef Google scholar
[57]
Antaris A L, Chen H, Cheng K, Sun Y, Hong G, Qu C, Diao S, Deng Z, Hu X, Zhang B, Zhang X, Yaghi O K, Alamparambil Z R, Hong X, Cheng Z, Dai H. . Nat. Mater., 2016, 15: 235,
CrossRef Google scholar
[58]
Luo X, Li J, Zhao J, Gu L, Qian X, Yang Y. . Chin. Chem. Lett., 2019, 30: 839,
CrossRef Google scholar
[59]
Li D-H, Smith B D. . J. Org. Chem., 2022, 87: 5893,
CrossRef Google scholar
[60]
Xu W, Leary E, Sangtarash S, Jirasek M, González M T, Christensen K E, Abellán Vicente L, Agraít N, Higgins S J, Nichols R J, Lambert C J, Erson H L. . J. Am. Chem. Soc., 2021, 143: 20472,
CrossRef Google scholar
[61]
Tolbert L M, Zhao X. . J. Am. Chem. Soc., 1997, 119: 3253,
CrossRef Google scholar
[62]
Grüneboom A, Hawwari I, Weidner D, Culemann S, Müller S, Henneberg S, Brenzel A, Merz S, Bornemann L, Zec K, Wuelling M, Kling L, Hasenberg M, Voortmann S, Lang S, Baum W, Ohs A, Kraff O, Quick H H, Jäger M, Landgraeber S, Dudda M, Danuser R, Stein J V, Rohde M, Gelse K, Garbe A I, Adamczyk A, Westendorf A M, Hoffmann D, Christiansen S, Engel D R, Vortkamp A, Krönke G, Herrmann M, Kamradt T, Schett G, Hasenberg A, Gunzer M. . Nat. Metab., 2019, 1: 236,
CrossRef Google scholar
[63]
Sivaraj K K, Adams R H. . Development, 2016, 143: 2706,
CrossRef Google scholar
[64]
Mi C, Zhang X, Yang C, Wu J, Chen X, Ma C, Wu S, Yang Z, Qiao P, Liu Y, Wu W, Guo Z, Liao J, Zhou J, Guan M, Liang C, Liu C, Jin D. . Nat. Commun., 2023, 14: 6287,
CrossRef Google scholar
[65]
Chen P, Qu F, He L, Li M, Sun P, Fan Q, Zhang C, Li D. . J. Nanobiotechnol., 2023, 21: 230,
CrossRef Google scholar
[66]
Yan R, Guo Y, Wang X, Liang G, Yang A, Li J. . ACS Nano, 2022, 16: 8399,
CrossRef Google scholar
[67]
Zaheer A, Lenkinski R E, Mahmood A, Jones A G, Cantley L C, Frangioni J V. . Nat. Biotechnol., 2001, 19: 1148,
CrossRef Google scholar
[68]
Bhushan K R, Misra P, Liu F, Mathur S, Lenkinski R E, Frangioni J V. . J. Am. Chem. Soc., 2008, 130: 17648,
CrossRef Google scholar
[69]
Hyun H, Wada H, Bao K, Gravier J, Yadav Y, Laramie M, Henary M, Frangioni J V, Choi H S. . Angew. Chem. Int. Edit., 2014, 53: 10668,
CrossRef Google scholar
[70]
Feng Y, Zhu S, Antaris A L, Chen H, Xiao Y, Lu X, Jiang L, Diao S, Yu K, Wang Y, Herraiz S, Yue J, Hong X, Hong G, Cheng Z, Dai H, Hsueh A J. . Chem. Sci., 2017, 8: 3703,
CrossRef Google scholar
[71]
Lin J, Li Q, Zeng X, Chen Z, Ding Q, Li Y, Zhou H, Meng X, Chen D, Deng Z, Hong X, Xiao Y. . Sci. China: Chem., 2020, 63: 766,
CrossRef Google scholar
[72]
Zhang X, Ji A, Wang Z, Lou H, Li J, Zheng L, Zhou Y, Qu C, Liu X, Chen H, Cheng Z. . J. Med. Chem., 2021, 64: 11543,
CrossRef Google scholar
[73]
Terenziani F, Przhonska O V, Webster S, Padilha L A, Slominsky Y L, Davydenko I G, Gerasov A O, Kovtun Y P, Shandura M P, Kachkovski A D, Hagan D J, Van Stryland E W, Painelli A. . J. Phys. Chem. Lett., 2010, 1: 1800,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/