Aggregation-induced Emission Probe for Fluorescence/Photoacoustic Dual-modality Imaging and Photodynamic/Photothermal Treatment

Peiyu Chen, Guoyang Zhang, Jiguang Li, Lijun Ma, Jiaying Zhou, Mingguang Zhu, Shuo Li, Zhuo Wang

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (2) : 293-304. DOI: 10.1007/s40242-024-3256-9
Article

Aggregation-induced Emission Probe for Fluorescence/Photoacoustic Dual-modality Imaging and Photodynamic/Photothermal Treatment

Author information +
History +

Abstract

The combination of near-infrared (NIR) fluorescence imaging (FLI) and photoacoustic imaging (PAI) can effectively compensate for each other’s inherent limitations, which can provide reliable and rich information on tumor biology. Therefore, the development of FL/PA dual-modality imaging probes is beneficial for achieving precision cancer diagnosis and treatment. Herein, we designed an efficient phototherapy agent methoxy bithiophene indene (OTIC), which was based on aggregation-induced emission (AIE) active fluorophores. To improve the water dispersion and enrichment of OTIC at the tumor site, OTIC nanoparticles (OTIC NPs) were prepared by a nanoprecipitation method. The balance between radiation and non-radiation energy dissipation was regulated by the strong donor-acceptor interaction and intramolecular motion. So OTIC NPs exhibited bright NIR fluorescence, photoacoustic signals, efficient generation of reactive oxygen species, and high photothermal conversion efficiency under NIR irradiation. Accurate imaging of the tumor and mice sentinel lymph nodes (SLNs) with OTIC NPs was visualized by NIR FL/PA dual-modal imaging. With the comprehensive imaging information provided by OTIC NPs in vivo, tumors were ablated under laser irradiation, which greatly improved the therapeutic efficacy. OTIC NPs would be possible to realize the precise guidance of FL/PA imaging for tumor treatment in the future clinical application.

Keywords

Aggregation-induced emission / Dual-modality imaging / Photodynamic/photothermal treatment

Cite this article

Download citation ▾
Peiyu Chen, Guoyang Zhang, Jiguang Li, Lijun Ma, Jiaying Zhou, Mingguang Zhu, Shuo Li, Zhuo Wang. Aggregation-induced Emission Probe for Fluorescence/Photoacoustic Dual-modality Imaging and Photodynamic/Photothermal Treatment. Chemical Research in Chinese Universities, 2024, 40(2): 293‒304 https://doi.org/10.1007/s40242-024-3256-9

References

[1]
Chen H, Zhang W, Zhu G, Xie J, Chen X. . Nat. Rev. Mater., 2017, 2: 17024,
CrossRef Google scholar
[2]
Li X, Lovell J F, Yoon J, Chen X. . Nat. Rev. Clin. Oncol., 2020, 17: 657,
CrossRef Google scholar
[3]
Xu C, Pu K. . Chem. Soc. Rev., 2021, 50: 1111,
CrossRef Google scholar
[4]
Zhang L, Liu Y, Huang H, Xie H, Zhang B, Xia W, Guo B. . Adv. Drug Del. Rev., 2022, 190: 114536,
CrossRef Google scholar
[5]
Li J, Pu K. . Chem. Soc. Rev., 2019, 48: 38,
CrossRef Google scholar
[6]
Cheng H B, Li Y, Tang B Z, Yoon J. . Chem. Soc. Rev., 2020, 49: 21,
CrossRef Google scholar
[7]
Ouyang J, Sun L, Zeng F, Wu S. . Coord. Chem. Rev., 2022, 458: 214438,
CrossRef Google scholar
[8]
Ong S Y, Zhang C, Dong X, Yao S Q. . Angew. Chem. Int. Ed., 2021, 60: 17797,
CrossRef Google scholar
[9]
Yin X, Cheng Y, Feng Y, Stiles W R, Park S H, Kang H, Choi H S. . Adv. Drug Del. Rev., 2022, 189: 114483,
CrossRef Google scholar
[10]
Chen Y, Chen S, Yu H, Wang Y, Cui M, Wang P, Sun P, Ji M. . Adv. Healthcare Mater., 2022, 11: 2201158,
CrossRef Google scholar
[11]
Xiao Y F, Xiang C, Li S, Mao C, Chen H, Chen X H, Tian S, Cui X, Wan Y, Huang Z, Li X, Zhang X H, Guo W, Lee C S. . Small, 2020, 16: 2002672,
CrossRef Google scholar
[12]
Upputuri P. K., Pramanik M., Nanomed. Nanobiotechnol., 2020, 12, e1618
[13]
Huang K, Zhang Y, Lin J, Huang P. . Biomater. Sci., 2019, 7: 472,
CrossRef Google scholar
[14]
Du J, Yang S, Qiao Y, Lu H, Dong H. . Biosens. Bioelectron., 2021, 191: 113478,
CrossRef Google scholar
[15]
Zhao Z, Swartchick C B, Chan J. . Chem. Soc. Rev., 2022, 51: 829,
CrossRef Google scholar
[16]
Ji Y, Jones C, Baek Y, Park G K, Kashiwagi S, Choi H S. . Adv. Drug Del. Rev., 2020, 167: 121,
CrossRef Google scholar
[17]
Li C, Chen G, Zhang Y, Wu F, Wang Q. . J. Am. Chem. Soc., 2020, 142: 14789,
CrossRef Google scholar
[18]
Wang X, Guo Z, Zhu S, Liu Y, Shi P, Tian H, Zhu W H. . J. Mater. Chem. B, 2016, 4: 4683,
CrossRef Google scholar
[19]
Shi Y, Zhu D, Wang D, Liu B, Du X, Wei G, Zhou X. . Coord. Chem. Rev., 2022, 471: 214725,
CrossRef Google scholar
[20]
Zhang L, Liu Y, Huang H, Zhang B, Xia W, Guo B. . Adv. Drug Del. Rev., 2022, 190: 114536,
CrossRef Google scholar
[21]
Wang H, Wang Y, Zheng Z, Yang F, Ding X, Wu A. . J. Mater. Chem. B, 2022, 10: 1418,
CrossRef Google scholar
[22]
Yang M, Deng J, Su H, Gu S, Zhang J, Zhong A, Wu F. . Mater. Chem. Front., 2021, 5: 406,
CrossRef Google scholar
[23]
Feng L, Li C, Liu L, Wang Z, Chen Z, Yu J, Ji W, Jiang G, Zhang P, Wang J, Tang B Z. . ACS Nano, 2022, 16: 4162,
CrossRef Google scholar
[24]
Chen L, Mao Z, Wang Y, Kang Y, Wang Y, Mei L, Ji X. . Sci. Adv., 2022, 8: eabo7372,
CrossRef Google scholar
[25]
Kang Y, Mao Z, Wang Y, Pan C, Ou M, Zhang H, Zeng W, Ji X. . Nat. Commun., 2022, 13: 2425,
CrossRef Google scholar
[26]
Zhang H, Mao Z, Kang Y, Zhang W, Mei L, Ji X. . Coord. Chem. Rev., 2023, 475: 214897,
CrossRef Google scholar
[27]
Zeng W, Zhang H, Yuan X, Chen T, Pei Z, Ji X. . Adv. Drug Del. Rev., 2022, 184: 114241,
CrossRef Google scholar
[28]
Sai D L, Lee J, Nguyen D L, Kim Y P. . Exp. Mol. Med., 2021, 53: 495,
CrossRef Google scholar
[29]
Huang L, Zhao S, Wu J, Yu L, Singh N, Yang K, Lan M, Wang P, Kim J S. . Coord. Chem. Rev., 2021, 438: 213888,
CrossRef Google scholar
[30]
Liu X, Liu Y, Li X, Huang J, Guo X, Zhang J, Luo Z, Shi Y, Jiang M, Qin B, Du Y, Luo L, You J. . ACS Nano, 2022, 16: 9240,
CrossRef Google scholar
[31]
Li J, Zhang W, Ji W, Wang J, Wang N, Wu W, Wu Q, Hou X, Hu W, Li L. . J. Mater. Chem. B, 2021, 9: 7909,
CrossRef Google scholar
[32]
Wang Z, Zhen X, Upputuri P K, Jiang Y, Pramanik M, Pu K, Xing B. . ACS Nano, 2019, 13: 5816,
CrossRef Google scholar
[33]
Moses A S, Taratula O R, Lee H, Luo F, Grenz T, Korzun T, Lorenz A S, Sabei F Y, Bracha S, Alani A W G, Slayden O D, Taratula O. . Small, 2020, 16: 1906936,
CrossRef Google scholar
[34]
Wang J, Liu Y, Morsch M, Lu Y, Shangguan P, Han L, Wang Z, Chen X, Song C, Liu S, Shi B, Tang B Z. . Adv. Mater., 2022, 34: 2106082,
CrossRef Google scholar
[35]
Zhang L, Zhuang W, Yuan Y, Shen J, Shi W, Liu G, Wu W, Zhang Q, Shao G, Mei Q, Fan Q. . ACS Appl. Mater. Interfaces, 2022, 14: 24174,
CrossRef Google scholar
[36]
Zhang Z, Xu W, Kang M, Wen H, Guo H, Zhang P, Xi L, Li K, Wang L, Wang D, Tang B Z. . Adv. Mater., 2020, 32: 2003210,
CrossRef Google scholar
[37]
Yin B, Qin Q, Li Z, Wang Y, Liu X, Liu Y, Huan S, Zhang X, Song G. . Nano Today, 2022, 45: 101550,
CrossRef Google scholar
[38]
Chen C, Ou H, Liu R, Ding D. . Adv. Mater., 2020, 32: 1806331,
CrossRef Google scholar
[39]
Feng G, Zhang G Q, Ding D. . Chem. Soc. Rev., 2020, 49: 8179,
CrossRef Google scholar
[40]
Jin Z Y, Fatima H, Zhang Y, Shao Z, Chen X J. . Adv. Therap., 2022, 5: 2100176,
CrossRef Google scholar
[41]
Ding G, Tong J, Gong J, Wang Z, Su Z, Liu L, Han X, Wang J, Zhang L, Wang X, Wen L L, Shan G G. . J. Mater. Chem. B, 2022, 10: 5272,
CrossRef Google scholar
[42]
Cheng K, Chen H, Jenkins C H, Zhang G, Zhao W, Zhang Z, Han F, Fung J, Yang M, Jiang Y, Xing L, Cheng Z. . ACS Nano, 2017, 11: 12276,
CrossRef Google scholar
[43]
Shao W, Wei Q, Wang S, Li F, Wu J, Ren J, Cao F, Liao H, Gao J, Zhou J, Ling D. . Mater. Horiz., 2020, 7: 1379,
CrossRef Google scholar
[44]
Gao H, Duan X, Jiao D, Zeng Y, Zheng X, Zhang J, Ou H, Qi J, Ding D. . Angew. Chem. Int. Ed., 2021, 60: 21047,
CrossRef Google scholar
[45]
Li X, Zhang D, Yin C, Lu G, Wan Y, Huang Z, Tan J, Li S, Luo J, Lee C S. . ACS Appl. Mater. Interfaces, 2021, 13: 15983,
CrossRef Google scholar
[46]
Mei J, Hong Y, Lam J WY, Qin A, Tang Y, Tang B Z. . Adv. Mater., 2014, 26: 5429,
CrossRef Google scholar
[47]
Yan D, Xie W, Zhang J, Wang L, Wang D, Tang B Z. . Angew. Chem. Int. Ed., 2021, 60: 2,
CrossRef Google scholar
[48]
Liu L, Wang X, Wang L J, Guo L, Li Y, Bai B, Fu F, Lu H, Zhao X. . ACS Appl. Mater. Interfaces, 2021, 13: 19668,
CrossRef Google scholar
[49]
Zhang C, Yuan J, Ho J K W, Song J, Zhong H, Xiao Y, Liu W, Lu X, Zou Y, So S K. . Adv. Funct. Mater, 2021, 31: 2101627,
CrossRef Google scholar
[50]
Yang Y, Liu Z, Zhang G, Zhang X, Zhang D. . Adv. Mater, 2019, 31: 1903104,
CrossRef Google scholar
[51]
Sabouri S, Liu M, Zhang S, Yao B, Soleimaninejad H, Baxter A A, Vidales G A, Subedi P, Duan C, Lou X, Hogan C F, Heras B, Poon I K H, Hong Y. . Adv. Health. Mater, 2021, 10: 2101300,
CrossRef Google scholar
[52]
Kim C, Song K H, Gao F, Wang L V. . Radiology, 2010, 255: 442,
CrossRef Google scholar
[53]
Xu R, Jiao D, Long Q, Li X, Shan K, Kong X, Ou H, Ding D, Tang Q. . Biomaterials, 2022, 289: 121780,
CrossRef Google scholar
[54]
Fathi P, Knox H J, Sar D, Tripathi I, Ostadhossein F, Misra S K, Esch M B, Chan J, Pan D. . ACS Nano, 2019, 13: 7690,
CrossRef Google scholar
[55]
Mu X, Feng W, Li C, Li K, Li Y, Jing X, Lu Y, Zhou X, Li Z. . Anal. Chem., 2022, 94: 9775,
CrossRef Google scholar
[56]
Cho S, Lee J, Tong M, Seo J H, Yang C. . Adv. Funct. Mater., 2011, 21: 1910,
CrossRef Google scholar
[57]
Niu G, Chen X. . Theranostics, 2015, 5: 686,
CrossRef Google scholar
[58]
Karaman S, Detmar M. . J. Clin. Invest., 2014, 124: 922,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/