Fatigue-resistant Hydrogels

Luofei Li , Hai Lei , Yi Cao

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (1) : 64 -77.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (1) : 64 -77. DOI: 10.1007/s40242-023-3250-7
Review

Fatigue-resistant Hydrogels

Author information +
History +
PDF

Abstract

Hydrogels have been extensively studied for applications in various fields, such as tissue engineering and soft robotics, as determined by their mechanical properties. The mechanical design of hydrogels typically focuses on the modulus, toughness, and deformability. These characteristics play important roles and make great achievements for hydrogel use. In recent years, a growing body of research has concentrated on the fatigue property of hydrogels, which determines their resistance to crack propagation in the networks during cyclic mechanical loads for applications. However, knowledge of hydrogel fatigue behavior remains notably deficient. Here, we present a brief overview of the fatigue behavior of hydrogels, encompassing the general experimental methods to measure the fatigue property and fundamental theoretical calculation models. Then, we highlight multiple strategies to enhance the fatigue resistance of hydrogels. Finally, we present our perspectives on fatigue-resistant hydrogels, outstanding challenges and potential directions for future research.

Keywords

Hydrogel / Fatigue-resistant / Fracture

Cite this article

Download citation ▾
Luofei Li, Hai Lei, Yi Cao. Fatigue-resistant Hydrogels. Chemical Research in Chinese Universities, 2024, 40(1): 64-77 DOI:10.1007/s40242-023-3250-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chirani N, Yahia L, Gritsch L, Motta F L, Chirani S, Fare S. J. Biomed. Sci., 2015, 4: 1.

[2]

Wichterle O, Lim D. Nature, 1960, 185: 117.

[3]

Lee K Y, Mooney D J. Chem. Rev., 2001, 101: 1869.

[4]

Griffith L G, Naughton G. Science, 2002, 295: 1009.

[5]

Drury J L, Mooney D J. Biomaterials, 2003, 24: 4337.

[6]

Lee K Y, Mooney D J. Prog. Polym. Sci., 2012, 37: 106.

[7]

Haque M A, Kurokawa T, Gong J P. Polymer, 2012, 53: 1805.

[8]

Tang J D, Mura C, Lampe K J. J. Am. Chem. Soc., 2019, 141: 4886.

[9]

Li T Y, Huang Y Y, Lu C J, Gu L W, Cao Y, Yin S. Chem. Res. Chinese Universities, 2022, 38(6): 1512.

[10]

Banerjee H, Ren H L. Soft Robot., 2017, 4: 191.

[11]

Yuk H, Lin S T, Ma C, Takaffoli M, Fang N X, Zhao X H. Nat. Commun., 2017, 8: 14230.

[12]

Li T F, Li G R, Liang Y M, Cheng T Y, Dai J, Yang X X, Liu B Y, Zeng Z D, Huang Z L, Luo Y W, Xie T, Yang W. Sci. Adv., 2017, 3: e1602045.

[13]

Banerjee H, Suhail M, Ren H L. Biomimetics, 2018, 3: 15.

[14]

Han D, Farino C, Yang C, Scott T, Browe D, Choi W, Freeman J W, Lee H. ACS Applied Materials & Interfaces, 2018, 10: 17512.

[15]

Xu Z Y, Zhou Y S, Zhang B P, Zhang C, Wang J F, Wang Z K. Micromachines, 2021, 12: 608.

[16]

Xu Y X, Lin Z Y, Huang X Q, Liu Y, Huang Y, Duan X F. ACS Nano, 2013, 7: 4042.

[17]

Sun J-Y, Keplinger C, Whitesides G M, Suo Z G. Adv. Mater., 2014, 26: 7608.

[18]

Larson C, Peele B, Li S, Robinson S, Totaro M, Beccai L, Mazzolai B, Shepherd R. Science, 201, 351: 1071.

[19]

Yang C H, Suo Z G. Nat. Rev. Mater., 2018, 3: 125.

[20]

Xu C T, Ma B, Yuan S, Zhao C, Liu H. Adv. Electron. Mater., 2020, 6: 1900721.

[21]

Hu L X, Chee P L, Sugiarto S, Yu Y, Shi C Q, Yan R, Yao Z Q, Shi X W, Zhi J C, Kai D, Yu H-D, Huang W. Adv. Mater., 2023, 35: 2205326.

[22]

Pelham R J, Wang Y-L. Proc. Natl. Acad. Sci. USA, 1997, 94: 13661.

[23]

Discher D E, Janmey P, Wang Y-L. Science, 2005, 310: 1139.

[24]

Vogel V, Sheetz M. Nat. Rev. Mol. Cell Biol., 200, 7: 265.

[25]

DuFort C C, Paszek M J, Weaver V M. Nat. Rev. Mol. Cell Biol., 2011, 12: 308.

[26]

Chaudhuri O, Cooper-White J, Janmey P A, Mooney D J, Shenoy V B. Nature, 2020, 584: 535.

[27]

Discher D E, Mooney D J, Zandstra P W. Science, 2009, 324: 1673.

[28]

Smith L R, Cho S, Discher D E. Physiology, 2018, 33: 16.

[29]

Bosnjak N, Silberstein M N. Science, 2021, 374: 150.

[30]

Kim J, Zhang G G, Shi M X Z, Suo Z G. Science, 2021, 374: 212.

[31]

Tan S, Wang C H, Yang B B, Luo J, Wu Y. Adv. Mater., 2022, 34: 2206904.

[32]

Bao B K, Zeng Q M, Li K, Wen J F, Zhang Y Q, Zheng Y J, Zhou R J, Shi C T, Chen T, Xiao C N, Chen B H, Wang T, Yu K, Sun Y, Lin Q N, He Y, Tu S T, Zhu L Y. Nat. Mater., 2023, 22: 1253.

[33]

Lin C-C, Metters A T. Adv. Drug Deliv. Rev., 200, 58: 1379.

[34]

Hoffman A S. Adv. Drug Deliv. Rev., 2012, 64: 18.

[35]

Ahmed E M. J. Adv. Res., 2015, 6: 105.

[36]

Creton C. Macromolecules, 2017, 50: 8297.

[37]

Zhang Y S, Khademhosseini A. Science, 2017, 356: eaaf3627.

[38]

Sheng H, Xue B, Qin M, Wang W, Cao Y. Chem. J. Chinese Unversities, 2020, 41(6): 1194.

[39]

Zhao X H, Chen X Y, Yuk H, Lin S T, Liu X Y, Parada G. Chem. Rev., 2021, 121: 4309.

[40]

Ritchie R O. Mater. Sci. Eng. A, 1988, 103: 15.

[41]

Fleck N A, Kang K J, Ashby M F. Acta Metall., 1994, 42: 365.

[42]

Suresh S. Fatigue of Materials, 1998, Cambridge: Cambridge University Press.

[43]

Grosskreutz J C. Phys. Status Solidi B: Basic Res., 1971, 47: 11.

[44]

Lavenstein S, Gu Y J, Madisetti D, El-Awady J A. Science, 2020, 370: 190.

[45]

Barr C M, Duong T, Bufford D C, Milne Z, Molkeri A, Heckman N M, Adams D P, Srivastava A, Hattar K, Demkowicz M J, Boyce B L. Nature, 2023, 620: 552.

[46]

Suo Z G, Hutchinson J W. Int. J. Fract., 1990, 43: 1.

[47]

Mars W V, Fatemi A. Int. J. Fatigue, 2002, 24: 949.

[48]

Mars W V, Fatemi A. Rubber Chem. Technol., 2004, 77: 391.

[49]

Miyano Y, Nakada M, Kudoh H, Muki R. Adv. Compos. Mater., 1999, 8: 235.

[50]

Luders C, Sinapius M. J. Compos. Mater., 2019, 53: 2849.

[51]

Nakada M, Miyano Y. J. Compos. Mater., 2020, 54: 1797.

[52]

Evans A G, Wiederhorn S M. Int. J. Fract., 1984, 26: 355.

[53]

Suo Z G, Kuo C-M, Barnett D M, Willis J R. J. Mech. Phys. Solids, 1992, 40: 739.

[54]

Wang R Z, Suo Z G, Evans A G, Yao N, Aksay I A. J. Mater. Res., 2001, 16: 2485.

[55]

Taylor D, O’Mara N, Ryan E, Takaza M, Simms C. J. Mech. Behav Mater., 2012, 6: 139.

[56]

Tang J D, Li J Y, Vlassak J J, Suo Z G. Extreme Mech. Lett., 2017, 10: 24.

[57]

Bai R B, Yang Q S, Tang J D, Morelle X P, Vlassak J, Suo Z G. Extreme Mech. Lett., 2017, 15: 91.

[58]

Zhang W L, Liu X, Wang J K, Tang J D, Hu J, Lu T Q, Suo Z G. Eng. Fract Mech., 2018, 187: 74.

[59]

Bai R B, Yang J W, Suo Z G. Eur. J. Mech. A: Solids, 2019, 74: 337.

[60]

Bai R B, Yang J W, Morelle X P, Yang C H, Suo Z G. ACS Macro Lett., 2018, 7: 312.

[61]

Rivlin R S, Thomas A G. J. Polym. Sci., 1953, 10: 291.

[62]

Lake G J, Thomas A G, Tabor D. Proc. Math. Phys. Eng. Sci., 1967, 300: 108.

[63]

Akagi Y, Sakurai H, Gong J P, Chung U-I, Sakai T. J. Chem. Phys., 2013, 139: 144905.

[64]

Long R, Hui C-Y. Extreme Mech. Lett., 2015, 4: 131.

[65]

Xin H, Oveissi F, Naficy S, Spinks G M. J. Polym. Sci. B: Polym. Phys., 2018, 56: 1287.

[66]

de Gennes P G. Langmuir, 199, 12: 4497.

[67]

Okumura K. EPL, 2004, 67: 470.

[68]

Tanaka Y, Kuwabara R, Na Y-H, Kurokawa T, Gong J P, Osada Y. J. Phys. Chem. B, 2005, 109: 11559.

[69]

Zhang W L, Hu J, Tang J D, Wang Z T, Wang J K, Lu T Q, Suo Z G. ACS Macro Lett., 2019, 8: 17.

[70]

Li Z Q, Liu Z S, Ng T Y, Sharma P. Extreme Mech. Lett., 2020, 35: 100617.

[71]

Lin S T, Zhao X H. Phys. Rev. E, 2020, 102: 052503.

[72]

Arora A, Lin T-S, Beech H K, Mochigase H, Wang R, Olsen B D. Macromolecules, 2020, 53: 7346.

[73]

Wang S, Panyukov S, Craig S L, Rubinstein M. Macromolecules, 2023, 56: 2309.

[74]

Barney C W, Ye Z Y, Sacligil I, McLeod K R, Zhang H, Tew G N, Riggleman R A, Crosby A J. Proc. Natl. Acad. Sci. USA, 2022, 119: e2112389119.

[75]

Wang S, Panyukov S, Rubinstein M, Craig S L. Macromolecules, 2019, 52: 2772.

[76]

Liu B H, Yin T H, Zhu J Y, Zhao D H, Yu H H, Qu S X, Yang W. Proc. Natl. Acad. Sci. USA, 2023, 120: e2217781120.

[77]

Raman R, Hua T, Gwynne D, Collins J, Tamang S, Zhou J L, Esfandiary T, Soares V, Pajovic S, Hayward A, Langer R, Traverso G. Sci. Adv., 2020, 6: eaay0065.

[78]

Gray T. D., Gallagher J. P., Proceedings of the 8th National Symposium on Fracture Mechanics, Providence, America, 1976

[79]

Alzos W. X., Hillberry B. M., Skat A. C., Proceedings of the Symposium on Fatigue Crack Growth Under Spectrum Loads at the 78th Annual Meeting of the American Society for Testing and Materials, Montreal, Canda, 1976

[80]

Lu Y-C, Yang F-P, Chen T. Eng. Fract. Mech., 2019, 212: 81.

[81]

Gong J P, Katsuyama Y, Kurokawa T, Osada Y. Adv. Mater., 2003, 15: 1155.

[82]

Sun J Y, Zhao X H, Illeperuma W R K, Chaudhuri O, Oh K H, Mooney D J, Vlassak J J, Suo Z G. Nature, 2012, 489: 133.

[83]

Sun T L, Kurokawa T, Kuroda S, Bin Ihsan A, Akasaki T, Sato K, Haque M A, Nakajima T, Gong J P. Nat. Mater., 2013, 12: 932.

[84]

Chen Q, Zhu L, Zhao C, Wang Q M, Zheng J. Adv. Mater., 2013, 25: 4171.

[85]

Chen H, Yang F Y, Chen Q, Zheng J. Adv. Mater., 2017, 29: 1606900.

[86]

Gong J P. Soft Matter, 2010, 6: 2583.

[87]

Zhao X H. Soft Matter, 2014, 10: 672.

[88]

Na Y-H, Kurokawa T, Katsuyama Y, Tsukeshiba H, Gong J P, Osada Y, Okabe S, Karino T, Shibayama M. Macromolecules, 2004, 37: 5370.

[89]

Tsukeshiba H, Huang M, Na Y-H, Kurokawa T, Kuwabara R, Tanaka Y, Furukawa H, Osada Y, Gong J P. J. Phys. Chem. B, 2005, 109: 16304.

[90]

Li X Y, Gong J P. Proc. Natl. Acad. Sci. USA, 2022, 119: e2200678119.

[91]

Bell G I. Science, 1978, 200: 618.

[92]

Evans E, Ritchie K. Biophys. J., 1999, 76: 2439.

[93]

Xue B, Bashir Z, Guo Y C, Yu W T, Sun W X, Li Y R, Zhang Y Y, Qin M, Wang W, Cao Y. Nat. Commun., 2023, 14: 2583.

[94]

Wu J H, Li P F, Dong C L, Jiang H T, Xue B, Gao X, Qin M, Wang W, Chen B, Cao Y. Nat. Commun., 2018, 9: 620.

[95]

Zhang D, Li L F, Fang Y Z, Ma Q, Cao Y, Lei H. Int. J. Mol. Sci., 2023, 24: 10778.

[96]

Lei H, Dong L, Li Y, Zhang J S, Chen H Y, Wu J H, Zhang Y, Fan Q Y, Xue B, Qin M, Chen B, Cao Y, Wang W. Nat. Commun., 2020, 11: 4032.

[97]

Wang Z, Zheng X J, Ouchi T, Kouznetsova T B, Beech H K, Av-Ron S, Matsuda T, Bowser B H, Wang S, Johnson J A, Kalow J A, Olsen B D, Gong J P, Rubinstein M, Craig S L. Science, 2021, 374: 193.

[98]

Liu C, Morimoto N, Jiang L, Kawahara S, Noritomi T, Yokoyama H, Mayumi K, Ito K. Science, 2021, 372: 1078.

[99]

Wang S, Beech H K, Bowser B H, Kouznetsova T B, Olsen B D, Rubinstein M, Craig S L. J. Am. Chem. Soc., 2021, 143: 3714.

[100]

Berisio R, Vitagliano L, Mazzarella L, Zagari A. Protein Sci., 2002, 11: 262.

[101]

Lin S T, Liu X Y, Liu J, Yuk H, Loh H-C, Parada G A, Settens C, Song J, Masic A, McKinley G H, Zhao X H. Sci. Adv., 2019, 5: eaau8528.

[102]

Liu J, Lin S T, Liu X Y, Qin Z, Yang Y Y, Zang J F, Zhao X H. Nat. Commun., 2020, 11: 1071.

[103]

Li W. Z., Wang X. L., Liu Z. Y., Zou X. Y., Shen Z. H., Liu D., Li L. L., Guo Y., Yan F., Nat. Mater., 2023, doi: https://doi.org/10.1038/s41563-023-01697-9

[104]

Zhang H F, Hussain I, Brust M, Butler M F, Rannard S P, Cooper A I. Nat. Mater., 2005, 4: 787.

[105]

Liang X Y, Chen G D, Lin S T, Zhang J J, Wang L, Zhang P, Wang Z Y, Wang Z B, Lan Y, Ge Q, Liu J. Adv. Mater, 2021, 33: 2102011.

[106]

Hua M T, Wu S W, Ma Y F, Zhao Y S, Chen Z L, Frenkel I, Strzalka J, Zhou H, Zhu X Y, He X M. Nature, 2021, 590: 594.

[107]

Han S J, Wu Q R, Zhu J D, Zhang J Y, Chen A B, Su S, Liu J T, Huang J R, Yang X X, Guan L H. Mater. Horizons, 2023, 10: 1012.

[108]

Mredha M T I, Guo Y Z, Nonoyama T, Nakajima T, Kurokawa T, Gong J P. Adv. Mater., 2018, 30: 1704937.

[109]

Lin S T, Liu J, Liu X Y, Zhao X H. Proc. Natl. Acad. Sci. USA, 2019, 116: 10244.

[110]

Mredha M T I, Le H H, Tran V T, Trtik P, Cui J X, Jeon I. Mater. Horizons, 2019, 6: 1504.

[111]

Bai R B, Yang J W, Morelle X P, Suo Z G. Macromol. Rapid Commun., 2019, 40: 1800883.

[112]

Wang Z J, Xiang C P, Yao X, Le Floch P, Mendez J, Suo Z G. Proc. Natl. Acad. Sci. USA, 2019, 116: 5967.

[113]

Xiang C P, Wang Z J, Yang C H, Yao X, Wang Y C, Suo Z G. Mater. Today, 2020, 34: 7.

[114]

Dookhith A Z, Lynd N A, Sanoja G E. Macromolecules, 2023, 56: 40.

[115]

Xue Y, Chen X M, Wang F C, Lin J S, Liu J. Adv. Mater., 2023, 35: 2304095.

[116]

Matsuda T, Kawakami R, Namba R, Nakajima T, Gong J P. Science, 2019, 363: 504.

[117]

Peppas N A. Die Makromolekulare Chemie, 1975, 176: 3433.

[118]

Willcox P J, Howie D W Jr, Schmidt-Rohr K, Hoagland D A, Gido S P, Pudjijanto S, Kleiner L W, Venkatraman S. J. Polym. Sci. B: Polym. Phys., 1999, 37: 3438.

[119]

Hassan C M, Peppas N A. Macromolecules, 2000, 33: 2472.

[120]

Holloway J L, Lowman A M, Palmese G R. Soft Matter, 2013, 9: 826.

[121]

Toki S, Fujimaki T, Okuyama M. Polymer, 2000, 41: 5423.

[122]

Schoenfeld B J. J. Strength Cond. Res., 2010, 24: 2857.

[123]

Li X Y, Cui K P, Sun T L, Meng L P, Yu C T, Li L B, Creton C, Kurokawa T, Gong J P. Proc. Natl. Acad. Sci. USA, 2020, 117: 7606.

[124]

Sun T L, Kurokawa T, Kuroda S, Bin Ihsan A, Akasaki T, Sato K, Haque M A, Nakajima T, Gong J P. Nat. Mater., 2013, 12: 932.

[125]

Bin Ihsan A, Sun T L, Kurokawa T, Karobi S N, Nakajima T, Nonoyama T, Roy C K, Luo F, Gong J P. Macromolecules, 201, 49: 4245.

[126]

Sun T L, Luo F, Kurokawa T, Karobi S N, Nakajima T, Gong J P. Soft Matter, 2015, 11: 9355.

[127]

Cui K P, Sun T L, Liang X B, Nakajima K, Ye Y N, Chen L, Kurokawa T, Gong J P. Phys. Rev. Lett., 2018, 121: 185501.

[128]

Danielsen S P O, Beech H K, Wang S, El-Zaatari B M, Wang X D, Sapir L, Ouchi T, Wang Z, Johnson P N, Hu Y X, Lundberg D J, Stoychev G, Craig S L, Johnson J A, Kalow J A, Olsen B D, Rubinstein M. Chem. Rev., 2021, 121: 5042.

AI Summary AI Mindmap
PDF

381

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/