Fatigue-resistant Hydrogels

Luofei Li, Hai Lei, Yi Cao

Chemical Research in Chinese Universities ›› 2023, Vol. 40 ›› Issue (1) : 64-77. DOI: 10.1007/s40242-023-3250-7
Review

Fatigue-resistant Hydrogels

Author information +
History +

Abstract

Hydrogels have been extensively studied for applications in various fields, such as tissue engineering and soft robotics, as determined by their mechanical properties. The mechanical design of hydrogels typically focuses on the modulus, toughness, and deformability. These characteristics play important roles and make great achievements for hydrogel use. In recent years, a growing body of research has concentrated on the fatigue property of hydrogels, which determines their resistance to crack propagation in the networks during cyclic mechanical loads for applications. However, knowledge of hydrogel fatigue behavior remains notably deficient. Here, we present a brief overview of the fatigue behavior of hydrogels, encompassing the general experimental methods to measure the fatigue property and fundamental theoretical calculation models. Then, we highlight multiple strategies to enhance the fatigue resistance of hydrogels. Finally, we present our perspectives on fatigue-resistant hydrogels, outstanding challenges and potential directions for future research.

Keywords

Hydrogel / Fatigue-resistant / Fracture

Cite this article

Download citation ▾
Luofei Li, Hai Lei, Yi Cao. Fatigue-resistant Hydrogels. Chemical Research in Chinese Universities, 2023, 40(1): 64‒77 https://doi.org/10.1007/s40242-023-3250-7

References

[1]
Chirani N, Yahia L, Gritsch L, Motta F L, Chirani S, Fare S. . J. Biomed. Sci., 2015, 4: 1
[2]
Wichterle O, Lim D. . Nature, 1960, 185: 117,
CrossRef Google scholar
[3]
Lee K Y, Mooney D J. . Chem. Rev., 2001, 101: 1869,
CrossRef Google scholar
[4]
Griffith L G, Naughton G. . Science, 2002, 295: 1009,
CrossRef Google scholar
[5]
Drury J L, Mooney D J. . Biomaterials, 2003, 24: 4337,
CrossRef Google scholar
[6]
Lee K Y, Mooney D J. . Prog. Polym. Sci., 2012, 37: 106,
CrossRef Google scholar
[7]
Haque M A, Kurokawa T, Gong J P. . Polymer, 2012, 53: 1805,
CrossRef Google scholar
[8]
Tang J D, Mura C, Lampe K J. . J. Am. Chem. Soc., 2019, 141: 4886,
CrossRef Google scholar
[9]
Li T Y, Huang Y Y, Lu C J, Gu L W, Cao Y, Yin S. . Chem. Res. Chinese Universities, 2022, 38(6): 1512,
CrossRef Google scholar
[10]
Banerjee H, Ren H L. . Soft Robot., 2017, 4: 191,
CrossRef Google scholar
[11]
Yuk H, Lin S T, Ma C, Takaffoli M, Fang N X, Zhao X H. . Nat. Commun., 2017, 8: 14230,
CrossRef Google scholar
[12]
Li T F, Li G R, Liang Y M, Cheng T Y, Dai J, Yang X X, Liu B Y, Zeng Z D, Huang Z L, Luo Y W, Xie T, Yang W. . Sci. Adv., 2017, 3: e1602045,
CrossRef Google scholar
[13]
Banerjee H, Suhail M, Ren H L. . Biomimetics, 2018, 3: 15,
CrossRef Google scholar
[14]
Han D, Farino C, Yang C, Scott T, Browe D, Choi W, Freeman J W, Lee H. . ACS Applied Materials & Interfaces, 2018, 10: 17512,
CrossRef Google scholar
[15]
Xu Z Y, Zhou Y S, Zhang B P, Zhang C, Wang J F, Wang Z K. . Micromachines, 2021, 12: 608,
CrossRef Google scholar
[16]
Xu Y X, Lin Z Y, Huang X Q, Liu Y, Huang Y, Duan X F. . ACS Nano, 2013, 7: 4042,
CrossRef Google scholar
[17]
Sun J-Y, Keplinger C, Whitesides G M, Suo Z G. . Adv. Mater., 2014, 26: 7608,
CrossRef Google scholar
[18]
Larson C, Peele B, Li S, Robinson S, Totaro M, Beccai L, Mazzolai B, Shepherd R. . Science, 2016, 351: 1071,
CrossRef Google scholar
[19]
Yang C H, Suo Z G. . Nat. Rev. Mater., 2018, 3: 125,
CrossRef Google scholar
[20]
Xu C T, Ma B, Yuan S, Zhao C, Liu H. . Adv. Electron. Mater., 2020, 6: 1900721,
CrossRef Google scholar
[21]
Hu L X, Chee P L, Sugiarto S, Yu Y, Shi C Q, Yan R, Yao Z Q, Shi X W, Zhi J C, Kai D, Yu H-D, Huang W. . Adv. Mater., 2023, 35: 2205326,
CrossRef Google scholar
[22]
Pelham R J, Wang Y-L. . Proc. Natl. Acad. Sci. USA, 1997, 94: 13661,
CrossRef Google scholar
[23]
Discher D E, Janmey P, Wang Y-L. . Science, 2005, 310: 1139,
CrossRef Google scholar
[24]
Vogel V, Sheetz M. . Nat. Rev. Mol. Cell Biol., 2006, 7: 265,
CrossRef Google scholar
[25]
DuFort C C, Paszek M J, Weaver V M. . Nat. Rev. Mol. Cell Biol., 2011, 12: 308,
CrossRef Google scholar
[26]
Chaudhuri O, Cooper-White J, Janmey P A, Mooney D J, Shenoy V B. . Nature, 2020, 584: 535,
CrossRef Google scholar
[27]
Discher D E, Mooney D J, Zandstra P W. . Science, 2009, 324: 1673,
CrossRef Google scholar
[28]
Smith L R, Cho S, Discher D E. . Physiology, 2018, 33: 16,
CrossRef Google scholar
[29]
Bosnjak N, Silberstein M N. . Science, 2021, 374: 150,
CrossRef Google scholar
[30]
Kim J, Zhang G G, Shi M X Z, Suo Z G. . Science, 2021, 374: 212,
CrossRef Google scholar
[31]
Tan S, Wang C H, Yang B B, Luo J, Wu Y. . Adv. Mater., 2022, 34: 2206904,
CrossRef Google scholar
[32]
Bao B K, Zeng Q M, Li K, Wen J F, Zhang Y Q, Zheng Y J, Zhou R J, Shi C T, Chen T, Xiao C N, Chen B H, Wang T, Yu K, Sun Y, Lin Q N, He Y, Tu S T, Zhu L Y. . Nat. Mater., 2023, 22: 1253,
CrossRef Google scholar
[33]
Lin C-C, Metters A T. . Adv. Drug Deliv. Rev., 2006, 58: 1379,
CrossRef Google scholar
[34]
Hoffman A S. . Adv. Drug Deliv. Rev., 2012, 64: 18,
CrossRef Google scholar
[35]
Ahmed E M. . J. Adv. Res., 2015, 6: 105,
CrossRef Google scholar
[36]
Creton C. . Macromolecules, 2017, 50: 8297,
CrossRef Google scholar
[37]
Zhang Y S, Khademhosseini A. . Science, 2017, 356: eaaf3627,
CrossRef Google scholar
[38]
Sheng H, Xue B, Qin M, Wang W, Cao Y. . Chem. J. Chinese Unversities, 2020, 41(6): 1194
[39]
Zhao X H, Chen X Y, Yuk H, Lin S T, Liu X Y, Parada G. . Chem. Rev., 2021, 121: 4309,
CrossRef Google scholar
[40]
Ritchie R O. . Mater. Sci. Eng. A, 1988, 103: 15,
CrossRef Google scholar
[41]
Fleck N A, Kang K J, Ashby M F. . Acta Metall., 1994, 42: 365,
CrossRef Google scholar
[42]
Suresh S. . Fatigue of Materials, 1998 Cambridge Cambridge University Press,
CrossRef Google scholar
[43]
Grosskreutz J C. . Phys. Status Solidi B: Basic Res., 1971, 47: 11,
CrossRef Google scholar
[44]
Lavenstein S, Gu Y J, Madisetti D, El-Awady J A. . Science, 2020, 370: 190,
CrossRef Google scholar
[45]
Barr C M, Duong T, Bufford D C, Milne Z, Molkeri A, Heckman N M, Adams D P, Srivastava A, Hattar K, Demkowicz M J, Boyce B L. . Nature, 2023, 620: 552,
CrossRef Google scholar
[46]
Suo Z G, Hutchinson J W. . Int. J. Fract., 1990, 43: 1,
CrossRef Google scholar
[47]
Mars W V, Fatemi A. . Int. J. Fatigue, 2002, 24: 949,
CrossRef Google scholar
[48]
Mars W V, Fatemi A. . Rubber Chem. Technol., 2004, 77: 391,
CrossRef Google scholar
[49]
Miyano Y, Nakada M, Kudoh H, Muki R. . Adv. Compos. Mater., 1999, 8: 235,
CrossRef Google scholar
[50]
Luders C, Sinapius M. . J. Compos. Mater., 2019, 53: 2849,
CrossRef Google scholar
[51]
Nakada M, Miyano Y. . J. Compos. Mater., 2020, 54: 1797,
CrossRef Google scholar
[52]
Evans A G, Wiederhorn S M. . Int. J. Fract., 1984, 26: 355,
CrossRef Google scholar
[53]
Suo Z G, Kuo C-M, Barnett D M, Willis J R. . J. Mech. Phys. Solids, 1992, 40: 739,
CrossRef Google scholar
[54]
Wang R Z, Suo Z G, Evans A G, Yao N, Aksay I A. . J. Mater. Res., 2001, 16: 2485,
CrossRef Google scholar
[55]
Taylor D, O’Mara N, Ryan E, Takaza M, Simms C. . J. Mech. Behav Mater., 2012, 6: 139
[56]
Tang J D, Li J Y, Vlassak J J, Suo Z G. . Extreme Mech. Lett., 2017, 10: 24,
CrossRef Google scholar
[57]
Bai R B, Yang Q S, Tang J D, Morelle X P, Vlassak J, Suo Z G. . Extreme Mech. Lett., 2017, 15: 91,
CrossRef Google scholar
[58]
Zhang W L, Liu X, Wang J K, Tang J D, Hu J, Lu T Q, Suo Z G. . Eng. Fract Mech., 2018, 187: 74,
CrossRef Google scholar
[59]
Bai R B, Yang J W, Suo Z G. . Eur. J. Mech. A: Solids, 2019, 74: 337,
CrossRef Google scholar
[60]
Bai R B, Yang J W, Morelle X P, Yang C H, Suo Z G. . ACS Macro Lett., 2018, 7: 312,
CrossRef Google scholar
[61]
Rivlin R S, Thomas A G. . J. Polym. Sci., 1953, 10: 291,
CrossRef Google scholar
[62]
Lake G J, Thomas A G, Tabor D. . Proc. Math. Phys. Eng. Sci., 1967, 300: 108
[63]
Akagi Y, Sakurai H, Gong J P, Chung U-I, Sakai T. . J. Chem. Phys., 2013, 139: 144905,
CrossRef Google scholar
[64]
Long R, Hui C-Y. . Extreme Mech. Lett., 2015, 4: 131,
CrossRef Google scholar
[65]
Xin H, Oveissi F, Naficy S, Spinks G M. . J. Polym. Sci. B: Polym. Phys., 2018, 56: 1287,
CrossRef Google scholar
[66]
de Gennes P G. . Langmuir, 1996, 12: 4497,
CrossRef Google scholar
[67]
Okumura K. . EPL, 2004, 67: 470,
CrossRef Google scholar
[68]
Tanaka Y, Kuwabara R, Na Y-H, Kurokawa T, Gong J P, Osada Y. . J. Phys. Chem. B, 2005, 109: 11559,
CrossRef Google scholar
[69]
Zhang W L, Hu J, Tang J D, Wang Z T, Wang J K, Lu T Q, Suo Z G. . ACS Macro Lett., 2019, 8: 17,
CrossRef Google scholar
[70]
Li Z Q, Liu Z S, Ng T Y, Sharma P. . Extreme Mech. Lett., 2020, 35: 100617,
CrossRef Google scholar
[71]
Lin S T, Zhao X H. . Phys. Rev. E, 2020, 102: 052503,
CrossRef Google scholar
[72]
Arora A, Lin T-S, Beech H K, Mochigase H, Wang R, Olsen B D. . Macromolecules, 2020, 53: 7346,
CrossRef Google scholar
[73]
Wang S, Panyukov S, Craig S L, Rubinstein M. . Macromolecules, 2023, 56: 2309,
CrossRef Google scholar
[74]
Barney C W, Ye Z Y, Sacligil I, McLeod K R, Zhang H, Tew G N, Riggleman R A, Crosby A J. . Proc. Natl. Acad. Sci. USA, 2022, 119: e2112389119,
CrossRef Google scholar
[75]
Wang S, Panyukov S, Rubinstein M, Craig S L. . Macromolecules, 2019, 52: 2772,
CrossRef Google scholar
[76]
Liu B H, Yin T H, Zhu J Y, Zhao D H, Yu H H, Qu S X, Yang W. . Proc. Natl. Acad. Sci. USA, 2023, 120: e2217781120,
CrossRef Google scholar
[77]
Raman R, Hua T, Gwynne D, Collins J, Tamang S, Zhou J L, Esfandiary T, Soares V, Pajovic S, Hayward A, Langer R, Traverso G. . Sci. Adv., 2020, 6: eaay0065,
CrossRef Google scholar
[78]
Gray T. D., Gallagher J. P., Proceedings of the 8th National Symposium on Fracture Mechanics, Providence, America, 1976
[79]
Alzos W. X., Hillberry B. M., Skat A. C., Proceedings of the Symposium on Fatigue Crack Growth Under Spectrum Loads at the 78th Annual Meeting of the American Society for Testing and Materials, Montreal, Canda, 1976
[80]
Lu Y-C, Yang F-P, Chen T. . Eng. Fract. Mech., 2019, 212: 81,
CrossRef Google scholar
[81]
Gong J P, Katsuyama Y, Kurokawa T, Osada Y. . Adv. Mater., 2003, 15: 1155,
CrossRef Google scholar
[82]
Sun J Y, Zhao X H, Illeperuma W R K, Chaudhuri O, Oh K H, Mooney D J, Vlassak J J, Suo Z G. . Nature, 2012, 489: 133,
CrossRef Google scholar
[83]
Sun T L, Kurokawa T, Kuroda S, Bin Ihsan A, Akasaki T, Sato K, Haque M A, Nakajima T, Gong J P. . Nat. Mater., 2013, 12: 932,
CrossRef Google scholar
[84]
Chen Q, Zhu L, Zhao C, Wang Q M, Zheng J. . Adv. Mater., 2013, 25: 4171,
CrossRef Google scholar
[85]
Chen H, Yang F Y, Chen Q, Zheng J. . Adv. Mater., 2017, 29: 1606900,
CrossRef Google scholar
[86]
Gong J P. . Soft Matter, 2010, 6: 2583,
CrossRef Google scholar
[87]
Zhao X H. . Soft Matter, 2014, 10: 672,
CrossRef Google scholar
[88]
Na Y-H, Kurokawa T, Katsuyama Y, Tsukeshiba H, Gong J P, Osada Y, Okabe S, Karino T, Shibayama M. . Macromolecules, 2004, 37: 5370,
CrossRef Google scholar
[89]
Tsukeshiba H, Huang M, Na Y-H, Kurokawa T, Kuwabara R, Tanaka Y, Furukawa H, Osada Y, Gong J P. . J. Phys. Chem. B, 2005, 109: 16304,
CrossRef Google scholar
[90]
Li X Y, Gong J P. . Proc. Natl. Acad. Sci. USA, 2022, 119: e2200678119,
CrossRef Google scholar
[91]
Bell G I. . Science, 1978, 200: 618,
CrossRef Google scholar
[92]
Evans E, Ritchie K. . Biophys. J., 1999, 76: 2439,
CrossRef Google scholar
[93]
Xue B, Bashir Z, Guo Y C, Yu W T, Sun W X, Li Y R, Zhang Y Y, Qin M, Wang W, Cao Y. . Nat. Commun., 2023, 14: 2583,
CrossRef Google scholar
[94]
Wu J H, Li P F, Dong C L, Jiang H T, Xue B, Gao X, Qin M, Wang W, Chen B, Cao Y. . Nat. Commun., 2018, 9: 620,
CrossRef Google scholar
[95]
Zhang D, Li L F, Fang Y Z, Ma Q, Cao Y, Lei H. . Int. J. Mol. Sci., 2023, 24: 10778,
CrossRef Google scholar
[96]
Lei H, Dong L, Li Y, Zhang J S, Chen H Y, Wu J H, Zhang Y, Fan Q Y, Xue B, Qin M, Chen B, Cao Y, Wang W. . Nat. Commun., 2020, 11: 4032,
CrossRef Google scholar
[97]
Wang Z, Zheng X J, Ouchi T, Kouznetsova T B, Beech H K, Av-Ron S, Matsuda T, Bowser B H, Wang S, Johnson J A, Kalow J A, Olsen B D, Gong J P, Rubinstein M, Craig S L. . Science, 2021, 374: 193,
CrossRef Google scholar
[98]
Liu C, Morimoto N, Jiang L, Kawahara S, Noritomi T, Yokoyama H, Mayumi K, Ito K. . Science, 2021, 372: 1078,
CrossRef Google scholar
[99]
Wang S, Beech H K, Bowser B H, Kouznetsova T B, Olsen B D, Rubinstein M, Craig S L. . J. Am. Chem. Soc., 2021, 143: 3714,
CrossRef Google scholar
[100]
Berisio R, Vitagliano L, Mazzarella L, Zagari A. . Protein Sci., 2002, 11: 262,
CrossRef Google scholar
[101]
Lin S T, Liu X Y, Liu J, Yuk H, Loh H-C, Parada G A, Settens C, Song J, Masic A, McKinley G H, Zhao X H. . Sci. Adv., 2019, 5: eaau8528,
CrossRef Google scholar
[102]
Liu J, Lin S T, Liu X Y, Qin Z, Yang Y Y, Zang J F, Zhao X H. . Nat. Commun., 2020, 11: 1071,
CrossRef Google scholar
[103]
Li W. Z., Wang X. L., Liu Z. Y., Zou X. Y., Shen Z. H., Liu D., Li L. L., Guo Y., Yan F., Nat. Mater., 2023, doi: https://doi.org/10.1038/s41563-023-01697-9
[104]
Zhang H F, Hussain I, Brust M, Butler M F, Rannard S P, Cooper A I. . Nat. Mater., 2005, 4: 787,
CrossRef Google scholar
[105]
Liang X Y, Chen G D, Lin S T, Zhang J J, Wang L, Zhang P, Wang Z Y, Wang Z B, Lan Y, Ge Q, Liu J. . Adv. Mater, 2021, 33: 2102011,
CrossRef Google scholar
[106]
Hua M T, Wu S W, Ma Y F, Zhao Y S, Chen Z L, Frenkel I, Strzalka J, Zhou H, Zhu X Y, He X M. . Nature, 2021, 590: 594,
CrossRef Google scholar
[107]
Han S J, Wu Q R, Zhu J D, Zhang J Y, Chen A B, Su S, Liu J T, Huang J R, Yang X X, Guan L H. . Mater. Horizons, 2023, 10: 1012,
CrossRef Google scholar
[108]
Mredha M T I, Guo Y Z, Nonoyama T, Nakajima T, Kurokawa T, Gong J P. . Adv. Mater., 2018, 30: 1704937,
CrossRef Google scholar
[109]
Lin S T, Liu J, Liu X Y, Zhao X H. . Proc. Natl. Acad. Sci. USA, 2019, 116: 10244,
CrossRef Google scholar
[110]
Mredha M T I, Le H H, Tran V T, Trtik P, Cui J X, Jeon I. . Mater. Horizons, 2019, 6: 1504,
CrossRef Google scholar
[111]
Bai R B, Yang J W, Morelle X P, Suo Z G. . Macromol. Rapid Commun., 2019, 40: 1800883,
CrossRef Google scholar
[112]
Wang Z J, Xiang C P, Yao X, Le Floch P, Mendez J, Suo Z G. . Proc. Natl. Acad. Sci. USA, 2019, 116: 5967,
CrossRef Google scholar
[113]
Xiang C P, Wang Z J, Yang C H, Yao X, Wang Y C, Suo Z G. . Mater. Today, 2020, 34: 7,
CrossRef Google scholar
[114]
Dookhith A Z, Lynd N A, Sanoja G E. . Macromolecules, 2023, 56: 40,
CrossRef Google scholar
[115]
Xue Y, Chen X M, Wang F C, Lin J S, Liu J. . Adv. Mater., 2023, 35: 2304095,
CrossRef Google scholar
[116]
Matsuda T, Kawakami R, Namba R, Nakajima T, Gong J P. . Science, 2019, 363: 504,
CrossRef Google scholar
[117]
Peppas N A. . Die Makromolekulare Chemie, 1975, 176: 3433,
CrossRef Google scholar
[118]
Willcox P J, Howie D W Jr, Schmidt-Rohr K, Hoagland D A, Gido S P, Pudjijanto S, Kleiner L W, Venkatraman S. . J. Polym. Sci. B: Polym. Phys., 1999, 37: 3438,
CrossRef Google scholar
[119]
Hassan C M, Peppas N A. . Macromolecules, 2000, 33: 2472,
CrossRef Google scholar
[120]
Holloway J L, Lowman A M, Palmese G R. . Soft Matter, 2013, 9: 826,
CrossRef Google scholar
[121]
Toki S, Fujimaki T, Okuyama M. . Polymer, 2000, 41: 5423,
CrossRef Google scholar
[122]
Schoenfeld B J. . J. Strength Cond. Res., 2010, 24: 2857,
CrossRef Google scholar
[123]
Li X Y, Cui K P, Sun T L, Meng L P, Yu C T, Li L B, Creton C, Kurokawa T, Gong J P. . Proc. Natl. Acad. Sci. USA, 2020, 117: 7606,
CrossRef Google scholar
[124]
Sun T L, Kurokawa T, Kuroda S, Bin Ihsan A, Akasaki T, Sato K, Haque M A, Nakajima T, Gong J P. . Nat. Mater., 2013, 12: 932,
CrossRef Google scholar
[125]
Bin Ihsan A, Sun T L, Kurokawa T, Karobi S N, Nakajima T, Nonoyama T, Roy C K, Luo F, Gong J P. . Macromolecules, 2016, 49: 4245,
CrossRef Google scholar
[126]
Sun T L, Luo F, Kurokawa T, Karobi S N, Nakajima T, Gong J P. . Soft Matter, 2015, 11: 9355,
CrossRef Google scholar
[127]
Cui K P, Sun T L, Liang X B, Nakajima K, Ye Y N, Chen L, Kurokawa T, Gong J P. . Phys. Rev. Lett., 2018, 121: 185501,
CrossRef Google scholar
[128]
Danielsen S P O, Beech H K, Wang S, El-Zaatari B M, Wang X D, Sapir L, Ouchi T, Wang Z, Johnson P N, Hu Y X, Lundberg D J, Stoychev G, Craig S L, Johnson J A, Kalow J A, Olsen B D, Rubinstein M. . Chem. Rev., 2021, 121: 5042,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/