Strategy for Detecting Systemic Treatment Sensitivity of Primary Liver Cancer Based on a Novel Infrared-emissive Organic Nanoparticle

Jun Wu, Yongzhi Li, Hanjiao Qin, Ying Gao, Bing Yang, Jiyao Sheng, Xuewen Zhang

Chemical Research in Chinese Universities ›› 2023, Vol. 40 ›› Issue (1) : 145-152. DOI: 10.1007/s40242-023-3248-1
Article

Strategy for Detecting Systemic Treatment Sensitivity of Primary Liver Cancer Based on a Novel Infrared-emissive Organic Nanoparticle

Author information +
History +

Abstract

In this study, we synthesized an organic material with near-infrared emission capabilities: 4-(2-(4-(9-(4-(diphenylamino) phenyl) naphtho[2,3-c] [1,2,5] thiadiazol-4-yl) phenyl)-1H-phenol-1-ylidene) malononitrile (TPA). Furthermore, TPA-PEG2000 fluorescent nanoparticles were prepared via coating the shells with PEG2000. TPA-PEG2000 exhibited strong near-infrared emission near 700 nm, with a photoluminescence quantum yield of 15.09%, indicating a high emission efficiency. Molecular biology experiments have confirmed its low toxicity and excellent biocompatibility. Increased cholesterol and phospholipid levels in liver cancer cell membranes with low sensitivity or high drug resistance lead to increased rigidity, reduced membrane fluidity, reduced endocytic efficiency, and reduced uptake. Therefore, the uptake of TPA-PEG2000 nanoparticles into cells and the near-infrared fluorescence intensity can be used to evaluate the sensitivity of systemic liver cancer treatment in a simple and efficient manner.

Keywords

Nanoparticle / Near-infrared / Fluorescence / Systemic treatment sensitivity / Cell membrane fluidity

Cite this article

Download citation ▾
Jun Wu, Yongzhi Li, Hanjiao Qin, Ying Gao, Bing Yang, Jiyao Sheng, Xuewen Zhang. Strategy for Detecting Systemic Treatment Sensitivity of Primary Liver Cancer Based on a Novel Infrared-emissive Organic Nanoparticle. Chemical Research in Chinese Universities, 2023, 40(1): 145‒152 https://doi.org/10.1007/s40242-023-3248-1

References

[1]
Fitzmaurice C, Allen C, Barber R M, Barregard L, Bhutta Z A, Brenner H, Dicker D J, Chimed-Orchir O, Dandona R, Dandona L. . JAMA Oncology, 2017, 3: 524,
CrossRef Google scholar
[2]
Bukowski K, Kciuk M, Kontek R. . Int. J. Mol. Sci., 2020, 21: 9,
CrossRef Google scholar
[3]
Wu Q, Yang Z, Nie Y, Shi Y, Fan D. . Cancer Letters, 2014, 347: 159,
CrossRef Google scholar
[4]
Minchinton A I, Tannock I F. . Nat. Rev. Cancer, 2006, 6: 583,
CrossRef Google scholar
[5]
Mayer L, Bally M, Cullis P. . Biochimica Et Biophysica Acta (BBA)-Biomembranes, 1986, 857: 123,
CrossRef Google scholar
[6]
Bunea A-I, Harloff-Helleberg S, Taboryski R, Nielsen H M. . Advances in Colloid and Interface Science, 2020, 281: 102177,
CrossRef Google scholar
[7]
Dallavalle S, Dobričić V, Lazzarato L, Gazzano E, Machuqueiro M, Pajeva I, Tsakovska I, Zidar N, Fruttero R. . Drug Resistance Updates, 2020, 50: 100682,
CrossRef Google scholar
[8]
Goler-Baron V, Assaraf Y G. . PloS One, 2011, 6: 16007,
CrossRef Google scholar
[9]
May G L, Wright L C, Dyne M, Mackinnon W B, Fox R M, Mountford C E. . Int J Cancer, 1988, 42: 728,
CrossRef Google scholar
[10]
Baritaki S, Apostolakis S, Kanellou P, Dimanche-Boitrel M T, Spandidos D A, Bonavida B. . Adv. Cancer Res., 2007, 98: 149,
CrossRef Google scholar
[11]
Peetla C, Bhave R, Vijayaraghavalu S, Stine A, Kooijman E, Labhasetwar V. . Mol. Pharm., 2010, 7: 2334,
CrossRef Google scholar
[12]
Lei Z N, Tian Q, Teng Q X, Wurpel J N D, Zeng L, Pan Y, Chen Z S. . MedComm, 2023, 4: 265,
CrossRef Google scholar
[13]
Zalba S, Ten Hagen T L. . Cancer Treat Rev., 2017, 52: 48,
CrossRef Google scholar
[14]
Sharom F. . Frontiers in Oncology, 2014, 4: 41,
CrossRef Google scholar
[15]
Hendrich A B, Michalak K. . Curr Drug Targets, 2003, 4: 23,
CrossRef Google scholar
[16]
Kopecka J, Trouillas P, Gašparović A Č, Gazzano E, Assaraf Y G, Riganti C. . Drug Resistance Updates, 2020, 49: 100670,
CrossRef Google scholar
[17]
Vijayaraghavalu S, Peetla C, Lu S, Labhasetwar V. . Mol. Pharm., 2012, 9: 2730,
CrossRef Google scholar
[18]
Higgins C F. . Annual Review of Cell Biology, 1992, 8: 67,
CrossRef Google scholar
[19]
Sinicrope F A, Dudeja P K, Bissonnette B M, Safa A R, Brasitus T A. . Journal of Biological Chemistry, 1992, 267: 24995,
CrossRef Google scholar
[20]
Cai C, Zhu H, Chen J. . Biochemical and Biophysical Research Communications, 2004, 320: 868,
CrossRef Google scholar
[21]
Wu F, Shao Z Y, Zhai B J, Zhao C L, Shen D M. . Ultrasound Med. Biol., 2011, 37: 151,
CrossRef Google scholar
[22]
Yoshida T, Kondo T, Ogawa R, Feril L B Jr., Zhao Q L, Watanabe A, Tsukada K. . Cancer Chemother Pharmacol, 2008, 61: 559,
CrossRef Google scholar
[23]
Schuldes H, Dolderer J H, Schoch C, Bickeböller R, Woodcock B G. . Int. J. Clin. Pharmacol. Ther., 2000, 38: 204,
CrossRef Google scholar
[24]
Erazo-Oliveras A., Muñoz-Vega M., Salinas M. L., Wang X., Chapkin R. S., Febs. J., 2022, doi: https://doi.org/10.1111/febs.16665
[25]
Peetla C, Vijayaraghavalu S, Labhasetwar V. . Advanced Drug Delivery Reviews, 2013, 65: 1686,
CrossRef Google scholar
[26]
Lee W K, Kolesnick R N. . Cell Signal, 2017, 38: 134,
CrossRef Google scholar
[27]
Vijayaraghavalu S, Peetla C, Lu S, Labhasetwar V. . Molecular Pharmaceutics, 2012, 9: 2730,
CrossRef Google scholar
[28]
Cong V T, Houng J L, Kavallaris M, Chen X, Tilley R D, Gooding J J. . Chem. Soc. Rev., 2022, 51: 7531,
CrossRef Google scholar
[29]
Nori A, Kopeček J. . Advanced Drug Delivery Reviews, 2005, 57: 609,
CrossRef Google scholar
[30]
Banushi B, Joseph S R, Lum B, Lee J J, Simpson F. . Nat. Rev. Cancer, 2023, 12: 18
[31]
Kaźmierczak Z, Szostak-Paluch K, Przybyło M, Langner M, Witkiewicz W, Jędruchniewicz N, Dąbrowska K. . Bioorganic & Medicinal Chemistry, 2020, 28: 115556,
CrossRef Google scholar
[32]
Rennick J J, Johnston A P R, Parton R G. . Nat. Nanotechnol., 2021, 16: 266,
CrossRef Google scholar
[33]
Chen K, Li X, Zhu H, Gong Q, Luo K. . Curr. Med. Chem., 2018, 25: 3017,
CrossRef Google scholar
[34]
Ziello J E, Huang Y, Jovin I S. . Mol. Med., 2010, 16: 222,
CrossRef Google scholar
[35]
Ha K D, Bidlingmaier S M, Liu B. . Frontiers in Physiology, 2016, 7: 381,
CrossRef Google scholar
[36]
Kratz F. . J. Control Release, 2008, 132: 171,
CrossRef Google scholar
[37]
Kopecka J, Campia I, Olivero P, Pescarmona G, Ghigo D, Bosia A, Riganti C. . J. Control Release, 2011, 149: 196,
CrossRef Google scholar
[38]
Pomeroy A E, Schmidt E V, Sorger P K, Palmer A C. . Trends in Cancer, 2022, 11: 915,
CrossRef Google scholar
[39]
Ju Y, Guo H, Edman M, Hamm-Alvarez S F. . Adv. Drug Deliv. Rev., 2020, 157: 118,
CrossRef Google scholar
[40]
Jin Y, Seo K H, Ko H M, Jung T W, Chung Y H, Lee J H, Park H H, Kim H C, Jeong J H, Lee S H. . Arch. Pharm. Res., 2019, 42: 455,
CrossRef Google scholar
[41]
Lu F, Zhao T, Sun X, Wang Z, Fan Q, Huang W. . Chem. Res. Chinese Universities, 2021, 37(4): 943,
CrossRef Google scholar
[42]
Li X, Tan W, Bai X, Li F. . Chem. Res. Chinese Universities, 2023, 39(2): 192,
CrossRef Google scholar
[43]
Hayashi K, Nakamura M, Miki H, Ozaki S, Abe M, Matsumoto T, Ishimura K. . Advanced Functional Materials, 2012, 22: 3539,
CrossRef Google scholar
[44]
Liu W, Zhang Y, Qi J, Qian J, Tang B Z. . Chem. Res. Chinese Universities, 2021, 37(1): 171,
CrossRef Google scholar
[45]
Alifu N, Zebibula A, Qi J, Zhang H, Sun C, Yu X, Xue D, Lam J W Y, Li G, Qian J, Tang B Z. . ACS Nano, 2018, 12: 11282,
CrossRef Google scholar
[46]
Zhang Z, Liu C, Akakuru O, Xu W, Wu A, Zhang Y. . Chem. Res. Chinese Universities, 2021, 37(4): 967,
CrossRef Google scholar
[47]
Gao Y, Yao M, Zhou C, Liu H, Zhang S-T, Yang B. . Journal of Materials Chemistry C, 2022, 10: 4579,
CrossRef Google scholar
[48]
Ying G, Sun K, Lv Y, Liu H, Zhang S-T, Yang B. . Dyes and Pigments, 2023, 213: 111196,
CrossRef Google scholar
[49]
Xiao S, Gao Y, Wang R, Liu H, Li W, Zhou C, Xue S, Zhang S-T, Yang B, Ma Y. . Chemical Engineering Journal, 2022, 440: 135911,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/