Engineering the Interface Between Au Nanoparticles and CoO-Ov to Enhance the Catalytic Performance of 5-Hydroxymethylfurfural (HMF) to 2,5-Dimethylfuran (DMF)

Shuang Xiang , Yong Guo , Xiaohui Liu , Yanqin Wang

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (1) : 47 -54.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (1) : 47 -54. DOI: 10.1007/s40242-023-3235-6
Article

Engineering the Interface Between Au Nanoparticles and CoO-Ov to Enhance the Catalytic Performance of 5-Hydroxymethylfurfural (HMF) to 2,5-Dimethylfuran (DMF)

Author information +
History +
PDF

Abstract

The interface between Au and support has attracted extensive interest because of its unique catalytic ability for hydrogen activation in catalytic hydrogenation/hydrogenolysis reactions. Herein, we create the Au-CoO-OV interface in the 1.0%Au/Co3O4-Rod-250 catalyst, which could dissociate H2 via the heterolytic way to yield rich hydride species and achieve excellent catalytic performance in the hydrogenolysis of biomass-derived 5-hydroxymethylfurfural (HMF) to 2,5-dimethylfuran (DMF). The XRD and HRTEM analyses show that Au nanoparticles are uniformly dispersed on CoO-OV surface and in situ DRIFTS spectra show the enhancement of heterolytic dissociation of hydrogen (signals of Au—D and O—D vibration) compared with bare CoO (Co3O4-Rod-250). This work provides insights for fabricating highly active Au-support catalysts for catalytic hydrogenation/hydrogenolysis reactions.

Keywords

Au-CoO-OV interface / Hydride species / Heterolytic dissociation / 5-Hydroxymethylfurfural (HMF) / 2,5-Dimethylfuran (DMF)

Cite this article

Download citation ▾
Shuang Xiang, Yong Guo, Xiaohui Liu, Yanqin Wang. Engineering the Interface Between Au Nanoparticles and CoO-Ov to Enhance the Catalytic Performance of 5-Hydroxymethylfurfural (HMF) to 2,5-Dimethylfuran (DMF). Chemical Research in Chinese Universities, 2024, 40(1): 47-54 DOI:10.1007/s40242-023-3235-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cano I, Martínez-Prieto L M, van Leeuwen P W N M. Catal. Sci. Technol. (UK), 2021, 11: 1157.

[2]

Aireddy D R, Ding K L. ACS Catal., 2022, 12: 4707.

[3]

Jing Y X, Wang Y Q. Chem Catal., 2023, 3: 100515.

[4]

Lent v R, Auras S V, Cao K, Walsh A J, Gleeson M A, Juurlink L B F. Science, 2019, 363: 155.

[5]

Ma Y F, Wang L W, Liu J. Chem. Res. Chinese Universities, 2022, 38(5): 1163.

[6]

Ferrin P, Kandoi S, Nilekar A U, Mavrikakis M. Surface Science, 2012, 606: 679.

[7]

Xiang S, Dong L, Wang Z-Q, Han X, Daemen L L, Li J, Cheng Y Q, Guo Y, Liu X H, Hu Y F, Ramirez-Cuesta A J, Yang S H, Gong X-Q, Wang Y Q. Nat. Commun., 2022, 13: 3657.

[8]

Copéret C, Estes D P, Larmier K, Searles K. Chem. Rev., 201, 116: 8463.

[9]

Wang L, Yan T J, Song R, Sun W, Dong Y C, Guo J L, Zhang Z Z, Wang X X, Ozin G A. Angew. Chem. Int. Ed., 2019, 58: 9501.

[10]

Ishida T, Murayama T, Taketoshi A, Haruta M. Chem. Rev., 2020, 120: 464.

[11]

Lou Y, Cai Y F, Hu W D, Wang L, Dai Q G, Zhan W C, Guo Y L, Hu P, Cao X-M, Liu J Y, Guo Y. ACS Catal., 2020, 10: 6094.

[12]

Haruta M. Chem. Rec., 2003, 3: 75.

[13]

Chen M S, Goodman D W. Science, 2004, 306: 252.

[14]

Zhang Y L, Zhang J Y, Zhang B S, Si R, Han B, Hong F, Niu Y M, Sun L, Li L, Qiao B T, Sun K J, Huang J H, Haruta M. Nat. Commun., 2020, 11: 558.

[15]

Lu Z, Piernavieja-Hermida M, Turner C H, Wu Z L, Lei Y. J. Phys. Chem. C, 2018, 122: 1688.

[16]

Li Z S, Zhang J H, Wang D Y, Ma W H, Zhong Q. J. Phys. Chem. C, 2017, 121: 25215.

[17]

Kanungo S, Keshri K S, Hoof A J F V, d’Angelo M F N, Schouten J C, Nijhuis T A, Hensen E J M, Chowdhury B. J. Catal., 201, 344: 434.

[18]

Zhu Z G, Gao X J, Wang X M, Yin M D, Wang Q Y, Ren W Z, Wang B, H Y, Liao W P. J. Energy Chem., 2021, 62: 599.

[19]

Hammer B, Norskov J K. Nature, 1995, 376: 238.

[20]

Hong F, Wang S Y, Zhang J Y, Fu J H, Jiang Q K, Sun K J, Huang J H. Chinese J. Catal., 2021, 42: 1530.

[21]

Wang C-M, Fan K-N, Liu Z-P. J. Catal., 2009, 266: 343.

[22]

Fiorio J L, Lopez N, Rossi L M. ACS Catal., 2017, 7: 2973.

[23]

Zhu Y, Tian L, Jiang Z, Pei Y, Xie S H, Qiao M H, Fan K N. J. Catal., 2011, 281: 106.

[24]

Wan W J, Nie X W, Janik M J, Song C S, Guo X W. J. Phys. Chem. C, 2018, 122: 17895.

[25]

Urayama T, Mitsudome T, Maeno Z, Mizugaki T, Jitsukawa K, Kaneda K. Chem. Eur. J., 201, 22: 17962.

[26]

Fujitani T, Nakamura I, Akita T, Okumura M, Haruta M. Angew. Chem. Int. Ed., 2009, 48: 9515.

[27]

Zhao J B, Yuan H F, Gui Y H, Li X M, Qin X M, Wei C Z, Liu Y F, Wang G Q, Zhou L M, Fang S M. J. Mater. Sci., 2021, 56: 5760.

[28]

Li S P, Dong M H, Yang J J, Cheng X M, Shen X J, Liu S L, Wang Z-Q, Gong X-Q, Liu H Z, Han B X. Nat. Commun., 2021, 12: 584.

[29]

Mahdavi-Shakib A, Whittaker T N, Yun T Y, Sravan Kumar K B, Rich L C, Wang S G, Rioux R M, Grabow L C, Chandler B D. Nat. Catal., 2023, 6: 710.

[30]

Xie X W, Li Y, Liu Z-Q, Haruta M, Shen W J. Nature, 2009, 458: 746.

[31]

Ouyang B, Xiong S H, Zhang Y H, Liu B, Li J L. Appl. Catal. A-gen., 2017, 543: 189.

[32]

Zhang S R, Shan J-J, Zhu Y, Frenkel A I, Patlolla A, Huang W X, Yoon S J, Wang L, Yoshida H, Takeda S, Tao F. J. Am. Chem. Soc., 2013, 135: 8283.

[33]

Zhang S R, Shan J-J, Zhu Y, Nguyen L, Huang W X, Yoshida H, Takeda S J, Tao F. Nano Lett., 2013, 13: 3310.

[34]

Lukashuk L, Föttinger K, Kolar E, Rameshan C, Teschner D, Hävecker M, Knop-Gericke A, Yigit N, Li H, McDermott E, Stöger-Pollach M, Rupprechter G. J. Catal., 201, 344: 1.

[35]

Biesinger M C, Payne B P, Grosvenor A P, Lau L W M, Gerson A R, Smart R SC. Appl. Surf. Sci., 2011, 257: 2717.

[36]

Tsunoyama H, Ichikuni N, Sakurai H, Tsukuda T. J. Am. Chem. Soc., 2009, 131: 7086.

[37]

Zhou H R, Li B X, Zhang Y X, Yan X Y, Lv W X, Wang X B, Yuan B B, Liu Y, Yang Z X, Lou X D. ACS Appl. Mater. Interfaces, 2021, 13: 40429.

[38]

Chai M Q, Tan Y, Pei G X, Li L, Zhang L L, Liu X Y, Wang A Q, Zhang T. J. Phys. Chem. C, 2017, 121: 19727.

[39]

Guo Y, Jing Y X, Xia Q N, Wang Y Q. ACC. Chem. Res., 2022, 55: 1301.

[40]

Zhou H, Jing Y X, Wang Y Q. Acta Phys.-Chim. Sin., 2022, 38: 2203016.

[41]

Jiang Z W, Zeng Y J, Hu D, Guo R C, Yan K, Luque R. Green Chem., 2023, 25: 871.

[42]

Chen S, Wojcieszak R, Dumeignil F, Marceau E, Royer S. Chem. Rev., 2018, 118: 11023.

[43]

Dutta S, Bhat N S. Biomass Conv. Bioref., 2023, 13: 541.

[44]

Castillo C, Brijaldo M H, Silva L P C, Passos F B. ChemCatChem, 2023, 15: e202300480.

[45]

Mäki-Arvela P, Ruiz D, Murzin D Y. ChemSusChem, 2021, 14: 150.

[46]

Wang X F, Liang X H, Li J M, Li Q B. Appl. Catal. A: Gen., 2019, 576: 85.

[47]

Xiang S, Dong L, Wang Z-Q, Han X, Guo Y, Liu X H, Gong X-Q, Wang Y Q. J. Energy Chem., 2023, 77: 191.

[48]

Liu P X, Zhao Y, Qin R X, Mo S G, Chen G X, Gu L, Chevrier D M, Zhang P, Guo Q, Zang D D, Wu B H, Fu G, Zheng N F. Science, 201, 352: 797.

[49]

Silverwood I P, Rogers S M, Callear S K, Parker S F, Catlow C R A. Chem. Commun., 201, 52: 533.

[50]

Deng Q, Li X, Gao R J, Wang J, Zeng Z L, Zou J-J, Deng S G, Tsang S C E. J. Am. Chem. Soc., 2021, 143: 21294.

[51]

Billups W E, Chang S-C, Hauge R H, Margrave J L. J. Am. Chem. Soc., 1995, 117: 1387.

AI Summary AI Mindmap
PDF

196

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/