PDF
Abstract
Two novel metal-organic frameworks (MOFs), JLU-MOF130 ([In(NH2−BDC)(Imi)(1H−Imi)]·DMF·H2O, NH2−H2BDC=2-aminobenzene-1,4-dicarboxylic acid, 1H−Imi=1H-imidazole, DMF=N,N-dimethylformamide) and JLU-MOF131 ([In(1,4-NDC)(Imi) (1H−Imi)]·DMF0.5, 1,4-H2NDC=1,4-naphthalene-dicarboxylic acid), were synthesized. JLU-MOF130 features a three-dimensional (3D) architecture with a neb topology. JLU-MOF131 is characterized by a two-dimensional (2D) structure with an sql topology. JLU-MOF130 has excellent fluorescence detection performance towards Fe3+, 2,4-dinitrophenol (2,4-DNP), and 2,4,6-trinitrophenol (TNP), but the fluorescence detection performance of JLU-MOF131 is further improved by converting NH2−H2BDC to more conjugated 1,4-H2NDC. The Stern-Volmer (SV) quenching constant (K SV) values of JLU-MOF130 sensing 2,4-DNP, TNP, and Fe3+ are 5.24×104, 4.44×104, and 4.73×103 L/mol, respectively. The corresponding limit of detection (LOD) values are 1.17, 1.36, and 14.59 µmol/L. The K SV values for JLU-MOF131 are 1.26×105, 9.02×104, and 8.48×103 L/mol, and the corresponding LOD values are 0.35, 0.42, and 3.60 µmol/L, respectively. interestingly, the emission wavelengths of the two MOFs obviously shift as the fluorescence emission intensities decrease upon the addition of 2,4-DNP and TNP, which can be applied in selective detection.
Keywords
Metal-organic framework
/
Fluorescence quenching
/
Fe3+
/
2,4-Dinitrophenol (2,4-DNP)
/
2,4,6-Trinitrophenol (TNP)
Cite this article
Download citation ▾
Dan Wang, Wen Li, Guanghua Li, Jia Hua, Yunling Liu.
Two Indium(III)-based Fluorescent Metal-Organic Frameworks for Highly Sensing Fe3+, 2,4-DNP, and TNP.
Chemical Research in Chinese Universities, 2024, 40(1): 119-126 DOI:10.1007/s40242-023-3228-5
| [1] |
Yan W, Zhang C, Chen S G, Han L J, Zheng H G. ACS Appl. Mater. Interfaces, 2017, 9: 1629.
|
| [2] |
Goswami R, Mandal S C, Pathak B, Neogi S. ACS Appl. Mater. Interfaces, 2019, 11: 9042.
|
| [3] |
Tajahmadi S, Molavi H, Ahmadijokani F, Shamloo A, Shojaei A, Sharifzadeh M, Rezakazemi M, Fatehizadeh A, Aminabhavi T M, Arjmand M. J. Control. Release., 2023, 353: 1.
|
| [4] |
Jie B, Lin H, Zhai Y, Ye J, Zhang D, Xie Y, Zhang X, Yang Y. Chem. Eng. J., 2023, 454: 139931.
|
| [5] |
Sahoo S, Mondal S, Sarma D. Coord. Chem. Rev., 2022, 470: 214707.
|
| [6] |
Wang X S, Li L, Yuan D Q, Huang Y B, Cao R. J. Hazard. Mater., 2018, 344: 283.
|
| [7] |
Mauricio F G M, Silva J Y R, Talhavini M, Júnior S A, Weber I T. Microchem. J., 2019, 150: 104037.
|
| [8] |
Xu Q Y, Tan Z, Liao X W, Wang C. Chin. Chem. Lett., 2022, 33: 22.
|
| [9] |
Das A, Bej S, Pandit N R, Banerjee P, Biswas B. J. Mater. Chem. A, 2023, 11: 6090.
|
| [10] |
Li H Y, Zhao S N, Zang S Q, Li J. Chem. Soc. Rev., 2020, 49: 6364.
|
| [11] |
Shi Y, Zou Y, Khan M S, Zhang M, Yan J, Zheng X, Wang W, Xie Z. J. Mater. Chem. C, 2023, 11: 3692.
|
| [12] |
D’Alessandro D M, Smit B, Long J R. Angew. Chem. Int. Ed., 2010, 49: 6058.
|
| [13] |
Suh M P, Park H J, Prasad T K, Lim D. Chem. Rev., 2012, 112: 782.
|
| [14] |
Li J, Sculley J, Zhou H C. Chem. Rev., 2012, 112: 869.
|
| [15] |
Li J, Kuppler R J, Zhou H C. Chem. Soc. Rev., 2009, 38: 1477.
|
| [16] |
Siegelman R L, Kim E J, Long J R. Nat. Mater., 2021, 20: 1060.
|
| [17] |
Rieth A J, Yang S, Wang E N, Dincă M. ACS Central Science, 2017, 3: 668.
|
| [18] |
Furukawa H, Gándara F, Zhang Y-B, Jiang J, Queen W L, Hudson M R, Yaghi O M. J. Am. Chem. Soc., 2014, 136: 4369.
|
| [19] |
Yamazaki Y, Miyaji M, Ishitani O. J. Am. Chem. Soc., 2022, 144: 6640.
|
| [20] |
Tombesi A, Pettinari C. Inorganics, 2021, 9: 81.
|
| [21] |
Wang Q, Gao Q Y, Al-Enizi A M, Nafady A, Ma S Q. Inorg. Chem. Front., 2020, 7: 300.
|
| [22] |
Konnerth H, Matsagar B M, Chen S S, Prechtl M H G, Shieh F K, Wu K C W. Coord. Chem. Rev., 2020, 416: 213319.
|
| [23] |
Zhu L, Liu X Q, Jiang H L, Sun L B. Chem. Rev., 2017, 117: 8129.
|
| [24] |
Lee J, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T. Chem. Soc. Rev., 2009, 38: 1450.
|
| [25] |
Niu L, Wu T Z, Chen M, Yang L, Yang J G, Wang Z X, Kornyshev A A, Jiang H L, Bi S, Feng G. Adv. Mater., 2022, 34: 2200999.
|
| [26] |
Qiu T, Liang Z, Guo W, Tabassum H, Gao S, Zou R Q. ACS Energy Lett., 2020, 5: 520.
|
| [27] |
Liang Z B, Qu C, Guo W, Zou R, Xu Q. Adv. Mater., 2018, 30: 1702891.
|
| [28] |
Chaemchuen S, Xiao X, Klomkliang N, Yusubov M S, Verpoort F. Nanomaterials, 2018, 8: 661.
|
| [29] |
Rojas S, Horcajada P. Chem. Rev., 2020, 120: 8378.
|
| [30] |
Mon M, Bruno R, Ferrando-Soria J, Armentano D, Pardo E. J. Mater. Chem. A, 2018, 6: 4912.
|
| [31] |
Li J, Wang X, Zhao G, Chen C, Chai Z, Alsaedi A, Hayat T, Wang X. Chem. Soc. Rev., 2018, 47: 2322.
|
| [32] |
Mohan B, Priyanka, Singh G, Chauhan A, Pombeiro A J L, Ren P. J. Hazard. Mater., 2023, 453: 131324.
|
| [33] |
Jia C, He T, Wang G-M. Coord. Chem. Rev., 2023, 476: 214930.
|
| [34] |
Xian T, Meng Q, Gao F, Hu M, Wang X. Coord. Chem. Rev., 2023, 474: 214866.
|
| [35] |
Liu X-Y, Lustig W P, Li J. ACS Energy Lett., 2020, 5: 2671.
|
| [36] |
Lustig W P, Mukherjee S, Rudd N D, Desai A V, Li J, Ghosh S K. Chem. Soc. Rev., 2017, 46: 3242.
|
| [37] |
Wei Z, Gu Z Y, Arvapally R K, Chen Y P, McDougald R N Jr., Ivy J F, Yakovenko A A, Feng D, Omary M A, Zhou H C. J. Am. Chem. Soc., 2014, 136: 8269.
|
| [38] |
Sun Q, Qin L, Lai C, Liu S, Chen W, Xu F, Ma D, Li Y, Qian S, Chen Z, Chen W, Ye H. J. Hazard. Mater., 2023, 447: 130848.
|
| [39] |
Liu W, Huang X, Xu C, Chen C, Yang L, Dou W, Chen W, Yang H, Liu W. Chem. Eur. J., 201, 22: 18769.
|
| [40] |
Goswami R, Mandal S C, Seal N, Pathak B, Neogi S. J. Mater. Chem. A, 2019, 7: 19471.
|
| [41] |
Goswami R, Das S, Seal N, Pathak B, Neogi S. ACS Appl. Mater. Interfaces, 2021, 13: 34012.
|
| [42] |
Afshariazar F, Morsali A. J. Mater. Chem. C, 2021, 9: 12849.
|
| [43] |
Bhattacharjee S, Bera S, Das R, Chakraborty D, Basu A, Banerjee P, Ghosh S, Bhaumik A. ACS Appl. Mater. Interfaces, 2022, 14: 20907.
|
| [44] |
Zhang X, Luo X, Zhang N, Wu J, Huang Y-Q. Inorg. Chem. Front., 2017, 4: 1888.
|
| [45] |
He H, Song Y, Sun F, Bian Z, Gao L, Zhu G. J. Mater. Chem. A, 2015, 3: 16598.
|
| [46] |
Hu Z, Deibert B J, Li J. Chem. Soc. Rev., 2014, 43: 5815.
|
| [47] |
Cui Y, Yue Y, Qian G, Chen B. Chem. Rev., 2012, 112: 1126.
|
| [48] |
Nagarkar S S, Desai A V, Ghosh S K. Chem. Commun., 2014, 50: 8915.
|
| [49] |
Wang B, Lv X-L, Feng D, Xie L-H, Zhang J, Li M, Xie Y, Li J-R, Zhou H-C. J. Am. Chem. Soc., 201, 138: 6204.
|
| [50] |
Wu D, Zhou K, Tian J, Liu C, Jiang F, Yuan D, Chen Q, Hong M. J. Mater. Chem. C, 2020, 8: 9828.
|
| [51] |
Gu Y-N, Lu J-F, Liu H, Zhao B, Zhou X-H, Zhao Y-Q, Sun Q-Z, Zhang B-G. Cryst. Growth Des., 2022, 22: 4874.
|
| [52] |
Chen L L, Cheng Z H, Peng X Y, Qiu G Q, Wang L. Anal. Methods, 2021, 14: 44.
|
| [53] |
Kamal S, Khalid M, Khan M S, Shahid M. Coord. Chem. Rev., 2023, 474: 214859.
|
| [54] |
Sun Q, Yang K, Ma W, Zhang L, Yuan G. Inorg. Chem. Front., 2020, 7: 4387.
|
| [55] |
Liu W, Qiao J, Gu J, Liu Y. Inorg. Chem., 2023, 62: 1272.
|
| [56] |
Nagarkar S S, Joarder B, Chaudhari A K, Mukherjee S, Ghosh S K. Angew. Chem. Int. Ed., 2013, 52: 2881.
|
| [57] |
Gu Y, Lin R, Luo X, Liu Y. Chem. Res. Chinese Universities, 2023, 39(2): 305.
|
| [58] |
Li W, Qiao J, Liu X, Liu Y. Chem. J. Chinese Universities, 2022, 43(1): 20210654.
|
| [59] |
Li W, Liu X, Li G, Liu Y. Chem. Res. Chinese Universities, 2023, 39(6): 1005.
|
| [60] |
Qiao J, Liu X, Zhang L, Eubank J F, Liu X, Liu Y. J. Am. Chem. Soc., 2022, 144: 17054.
|