Two Indium(III)-based Fluorescent Metal-Organic Frameworks for Highly Sensing Fe3+, 2,4-DNP, and TNP

Dan Wang, Wen Li, Guanghua Li, Jia Hua, Yunling Liu

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (1) : 119-126. DOI: 10.1007/s40242-023-3228-5
Article

Two Indium(III)-based Fluorescent Metal-Organic Frameworks for Highly Sensing Fe3+, 2,4-DNP, and TNP

Author information +
History +

Abstract

Two novel metal-organic frameworks (MOFs), JLU-MOF130 ([In(NH2−BDC)(Imi)(1H−Imi)]·DMF·H2O, NH2−H2BDC=2-aminobenzene-1,4-dicarboxylic acid, 1H−Imi=1H-imidazole, DMF=N,N-dimethylformamide) and JLU-MOF131 ([In(1,4-NDC)(Imi) (1H−Imi)]·DMF0.5, 1,4-H2NDC=1,4-naphthalene-dicarboxylic acid), were synthesized. JLU-MOF130 features a three-dimensional (3D) architecture with a neb topology. JLU-MOF131 is characterized by a two-dimensional (2D) structure with an sql topology. JLU-MOF130 has excellent fluorescence detection performance towards Fe3+, 2,4-dinitrophenol (2,4-DNP), and 2,4,6-trinitrophenol (TNP), but the fluorescence detection performance of JLU-MOF131 is further improved by converting NH2−H2BDC to more conjugated 1,4-H2NDC. The Stern-Volmer (SV) quenching constant (K SV) values of JLU-MOF130 sensing 2,4-DNP, TNP, and Fe3+ are 5.24×104, 4.44×104, and 4.73×103 L/mol, respectively. The corresponding limit of detection (LOD) values are 1.17, 1.36, and 14.59 µmol/L. The K SV values for JLU-MOF131 are 1.26×105, 9.02×104, and 8.48×103 L/mol, and the corresponding LOD values are 0.35, 0.42, and 3.60 µmol/L, respectively. interestingly, the emission wavelengths of the two MOFs obviously shift as the fluorescence emission intensities decrease upon the addition of 2,4-DNP and TNP, which can be applied in selective detection.

Keywords

Metal-organic framework / Fluorescence quenching / Fe3+ / 2,4-Dinitrophenol (2,4-DNP) / 2,4,6-Trinitrophenol (TNP)

Cite this article

Download citation ▾
Dan Wang, Wen Li, Guanghua Li, Jia Hua, Yunling Liu. Two Indium(III)-based Fluorescent Metal-Organic Frameworks for Highly Sensing Fe3+, 2,4-DNP, and TNP. Chemical Research in Chinese Universities, 2024, 40(1): 119‒126 https://doi.org/10.1007/s40242-023-3228-5

References

[1]
Yan W, Zhang C, Chen S G, Han L J, Zheng H G. . ACS Appl. Mater. Interfaces, 2017, 9: 1629,
CrossRef Google scholar
[2]
Goswami R, Mandal S C, Pathak B, Neogi S. . ACS Appl. Mater. Interfaces, 2019, 11: 9042,
CrossRef Google scholar
[3]
Tajahmadi S, Molavi H, Ahmadijokani F, Shamloo A, Shojaei A, Sharifzadeh M, Rezakazemi M, Fatehizadeh A, Aminabhavi T M, Arjmand M. . J. Control. Release., 2023, 353: 1,
CrossRef Google scholar
[4]
Jie B, Lin H, Zhai Y, Ye J, Zhang D, Xie Y, Zhang X, Yang Y. . Chem. Eng. J., 2023, 454: 139931,
CrossRef Google scholar
[5]
Sahoo S, Mondal S, Sarma D. . Coord. Chem. Rev., 2022, 470: 214707,
CrossRef Google scholar
[6]
Wang X S, Li L, Yuan D Q, Huang Y B, Cao R. . J. Hazard. Mater., 2018, 344: 283,
CrossRef Google scholar
[7]
Mauricio F G M, Silva J Y R, Talhavini M, Júnior S A, Weber I T. . Microchem. J., 2019, 150: 104037,
CrossRef Google scholar
[8]
Xu Q Y, Tan Z, Liao X W, Wang C. . Chin. Chem. Lett., 2022, 33: 22,
CrossRef Google scholar
[9]
Das A, Bej S, Pandit N R, Banerjee P, Biswas B. . J. Mater. Chem. A, 2023, 11: 6090,
CrossRef Google scholar
[10]
Li H Y, Zhao S N, Zang S Q, Li J. . Chem. Soc. Rev., 2020, 49: 6364,
CrossRef Google scholar
[11]
Shi Y, Zou Y, Khan M S, Zhang M, Yan J, Zheng X, Wang W, Xie Z. . J. Mater. Chem. C, 2023, 11: 3692,
CrossRef Google scholar
[12]
D’Alessandro D M, Smit B, Long J R. . Angew. Chem. Int. Ed., 2010, 49: 6058,
CrossRef Google scholar
[13]
Suh M P, Park H J, Prasad T K, Lim D. . Chem. Rev., 2012, 112: 782,
CrossRef Google scholar
[14]
Li J, Sculley J, Zhou H C. . Chem. Rev., 2012, 112: 869,
CrossRef Google scholar
[15]
Li J, Kuppler R J, Zhou H C. . Chem. Soc. Rev., 2009, 38: 1477,
CrossRef Google scholar
[16]
Siegelman R L, Kim E J, Long J R. . Nat. Mater., 2021, 20: 1060,
CrossRef Google scholar
[17]
Rieth A J, Yang S, Wang E N, Dincă M. . ACS Central Science, 2017, 3: 668,
CrossRef Google scholar
[18]
Furukawa H, Gándara F, Zhang Y-B, Jiang J, Queen W L, Hudson M R, Yaghi O M. . J. Am. Chem. Soc., 2014, 136: 4369,
CrossRef Google scholar
[19]
Yamazaki Y, Miyaji M, Ishitani O. . J. Am. Chem. Soc., 2022, 144: 6640,
CrossRef Google scholar
[20]
Tombesi A, Pettinari C. . Inorganics, 2021, 9: 81,
CrossRef Google scholar
[21]
Wang Q, Gao Q Y, Al-Enizi A M, Nafady A, Ma S Q. . Inorg. Chem. Front., 2020, 7: 300,
CrossRef Google scholar
[22]
Konnerth H, Matsagar B M, Chen S S, Prechtl M H G, Shieh F K, Wu K C W. . Coord. Chem. Rev., 2020, 416: 213319,
CrossRef Google scholar
[23]
Zhu L, Liu X Q, Jiang H L, Sun L B. . Chem. Rev., 2017, 117: 8129,
CrossRef Google scholar
[24]
Lee J, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T. . Chem. Soc. Rev., 2009, 38: 1450,
CrossRef Google scholar
[25]
Niu L, Wu T Z, Chen M, Yang L, Yang J G, Wang Z X, Kornyshev A A, Jiang H L, Bi S, Feng G. . Adv. Mater., 2022, 34: 2200999,
CrossRef Google scholar
[26]
Qiu T, Liang Z, Guo W, Tabassum H, Gao S, Zou R Q. . ACS Energy Lett., 2020, 5: 520,
CrossRef Google scholar
[27]
Liang Z B, Qu C, Guo W, Zou R, Xu Q. . Adv. Mater., 2018, 30: 1702891,
CrossRef Google scholar
[28]
Chaemchuen S, Xiao X, Klomkliang N, Yusubov M S, Verpoort F. . Nanomaterials, 2018, 8: 661,
CrossRef Google scholar
[29]
Rojas S, Horcajada P. . Chem. Rev., 2020, 120: 8378,
CrossRef Google scholar
[30]
Mon M, Bruno R, Ferrando-Soria J, Armentano D, Pardo E. . J. Mater. Chem. A, 2018, 6: 4912,
CrossRef Google scholar
[31]
Li J, Wang X, Zhao G, Chen C, Chai Z, Alsaedi A, Hayat T, Wang X. . Chem. Soc. Rev., 2018, 47: 2322,
CrossRef Google scholar
[32]
Mohan B, Priyanka, Singh G, Chauhan A, Pombeiro A J L, Ren P. . J. Hazard. Mater., 2023, 453: 131324,
CrossRef Google scholar
[33]
Jia C, He T, Wang G-M. . Coord. Chem. Rev., 2023, 476: 214930,
CrossRef Google scholar
[34]
Xian T, Meng Q, Gao F, Hu M, Wang X. . Coord. Chem. Rev., 2023, 474: 214866,
CrossRef Google scholar
[35]
Liu X-Y, Lustig W P, Li J. . ACS Energy Lett., 2020, 5: 2671,
CrossRef Google scholar
[36]
Lustig W P, Mukherjee S, Rudd N D, Desai A V, Li J, Ghosh S K. . Chem. Soc. Rev., 2017, 46: 3242,
CrossRef Google scholar
[37]
Wei Z, Gu Z Y, Arvapally R K, Chen Y P, McDougald R N Jr., Ivy J F, Yakovenko A A, Feng D, Omary M A, Zhou H C. . J. Am. Chem. Soc., 2014, 136: 8269,
CrossRef Google scholar
[38]
Sun Q, Qin L, Lai C, Liu S, Chen W, Xu F, Ma D, Li Y, Qian S, Chen Z, Chen W, Ye H. . J. Hazard. Mater., 2023, 447: 130848,
CrossRef Google scholar
[39]
Liu W, Huang X, Xu C, Chen C, Yang L, Dou W, Chen W, Yang H, Liu W. . Chem. Eur. J., 2016, 22: 18769,
CrossRef Google scholar
[40]
Goswami R, Mandal S C, Seal N, Pathak B, Neogi S. . J. Mater. Chem. A, 2019, 7: 19471,
CrossRef Google scholar
[41]
Goswami R, Das S, Seal N, Pathak B, Neogi S. . ACS Appl. Mater. Interfaces, 2021, 13: 34012,
CrossRef Google scholar
[42]
Afshariazar F, Morsali A. . J. Mater. Chem. C, 2021, 9: 12849,
CrossRef Google scholar
[43]
Bhattacharjee S, Bera S, Das R, Chakraborty D, Basu A, Banerjee P, Ghosh S, Bhaumik A. . ACS Appl. Mater. Interfaces, 2022, 14: 20907,
CrossRef Google scholar
[44]
Zhang X, Luo X, Zhang N, Wu J, Huang Y-Q. . Inorg. Chem. Front., 2017, 4: 1888,
CrossRef Google scholar
[45]
He H, Song Y, Sun F, Bian Z, Gao L, Zhu G. . J. Mater. Chem. A, 2015, 3: 16598,
CrossRef Google scholar
[46]
Hu Z, Deibert B J, Li J. . Chem. Soc. Rev., 2014, 43: 5815,
CrossRef Google scholar
[47]
Cui Y, Yue Y, Qian G, Chen B. . Chem. Rev., 2012, 112: 1126,
CrossRef Google scholar
[48]
Nagarkar S S, Desai A V, Ghosh S K. . Chem. Commun., 2014, 50: 8915,
CrossRef Google scholar
[49]
Wang B, Lv X-L, Feng D, Xie L-H, Zhang J, Li M, Xie Y, Li J-R, Zhou H-C. . J. Am. Chem. Soc., 2016, 138: 6204,
CrossRef Google scholar
[50]
Wu D, Zhou K, Tian J, Liu C, Jiang F, Yuan D, Chen Q, Hong M. . J. Mater. Chem. C, 2020, 8: 9828,
CrossRef Google scholar
[51]
Gu Y-N, Lu J-F, Liu H, Zhao B, Zhou X-H, Zhao Y-Q, Sun Q-Z, Zhang B-G. . Cryst. Growth Des., 2022, 22: 4874,
CrossRef Google scholar
[52]
Chen L L, Cheng Z H, Peng X Y, Qiu G Q, Wang L. . Anal. Methods, 2021, 14: 44,
CrossRef Google scholar
[53]
Kamal S, Khalid M, Khan M S, Shahid M. . Coord. Chem. Rev., 2023, 474: 214859,
CrossRef Google scholar
[54]
Sun Q, Yang K, Ma W, Zhang L, Yuan G. . Inorg. Chem. Front., 2020, 7: 4387,
CrossRef Google scholar
[55]
Liu W, Qiao J, Gu J, Liu Y. . Inorg. Chem., 2023, 62: 1272,
CrossRef Google scholar
[56]
Nagarkar S S, Joarder B, Chaudhari A K, Mukherjee S, Ghosh S K. . Angew. Chem. Int. Ed., 2013, 52: 2881,
CrossRef Google scholar
[57]
Gu Y, Lin R, Luo X, Liu Y. . Chem. Res. Chinese Universities, 2023, 39(2): 305,
CrossRef Google scholar
[58]
Li W, Qiao J, Liu X, Liu Y. . Chem. J. Chinese Universities, 2022, 43(1): 20210654
[59]
Li W, Liu X, Li G, Liu Y. . Chem. Res. Chinese Universities, 2023, 39(6): 1005,
CrossRef Google scholar
[60]
Qiao J, Liu X, Zhang L, Eubank J F, Liu X, Liu Y. . J. Am. Chem. Soc., 2022, 144: 17054,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/