Two Indium(III)-based Fluorescent Metal-Organic Frameworks for Highly Sensing Fe3+, 2,4-DNP, and TNP

Dan Wang , Wen Li , Guanghua Li , Jia Hua , Yunling Liu

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (1) : 119 -126.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (1) : 119 -126. DOI: 10.1007/s40242-023-3228-5
Article

Two Indium(III)-based Fluorescent Metal-Organic Frameworks for Highly Sensing Fe3+, 2,4-DNP, and TNP

Author information +
History +
PDF

Abstract

Two novel metal-organic frameworks (MOFs), JLU-MOF130 ([In(NH2−BDC)(Imi)(1H−Imi)]·DMF·H2O, NH2−H2BDC=2-aminobenzene-1,4-dicarboxylic acid, 1H−Imi=1H-imidazole, DMF=N,N-dimethylformamide) and JLU-MOF131 ([In(1,4-NDC)(Imi) (1H−Imi)]·DMF0.5, 1,4-H2NDC=1,4-naphthalene-dicarboxylic acid), were synthesized. JLU-MOF130 features a three-dimensional (3D) architecture with a neb topology. JLU-MOF131 is characterized by a two-dimensional (2D) structure with an sql topology. JLU-MOF130 has excellent fluorescence detection performance towards Fe3+, 2,4-dinitrophenol (2,4-DNP), and 2,4,6-trinitrophenol (TNP), but the fluorescence detection performance of JLU-MOF131 is further improved by converting NH2−H2BDC to more conjugated 1,4-H2NDC. The Stern-Volmer (SV) quenching constant (K SV) values of JLU-MOF130 sensing 2,4-DNP, TNP, and Fe3+ are 5.24×104, 4.44×104, and 4.73×103 L/mol, respectively. The corresponding limit of detection (LOD) values are 1.17, 1.36, and 14.59 µmol/L. The K SV values for JLU-MOF131 are 1.26×105, 9.02×104, and 8.48×103 L/mol, and the corresponding LOD values are 0.35, 0.42, and 3.60 µmol/L, respectively. interestingly, the emission wavelengths of the two MOFs obviously shift as the fluorescence emission intensities decrease upon the addition of 2,4-DNP and TNP, which can be applied in selective detection.

Keywords

Metal-organic framework / Fluorescence quenching / Fe3+ / 2,4-Dinitrophenol (2,4-DNP) / 2,4,6-Trinitrophenol (TNP)

Cite this article

Download citation ▾
Dan Wang, Wen Li, Guanghua Li, Jia Hua, Yunling Liu. Two Indium(III)-based Fluorescent Metal-Organic Frameworks for Highly Sensing Fe3+, 2,4-DNP, and TNP. Chemical Research in Chinese Universities, 2024, 40(1): 119-126 DOI:10.1007/s40242-023-3228-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yan W, Zhang C, Chen S G, Han L J, Zheng H G. ACS Appl. Mater. Interfaces, 2017, 9: 1629.

[2]

Goswami R, Mandal S C, Pathak B, Neogi S. ACS Appl. Mater. Interfaces, 2019, 11: 9042.

[3]

Tajahmadi S, Molavi H, Ahmadijokani F, Shamloo A, Shojaei A, Sharifzadeh M, Rezakazemi M, Fatehizadeh A, Aminabhavi T M, Arjmand M. J. Control. Release., 2023, 353: 1.

[4]

Jie B, Lin H, Zhai Y, Ye J, Zhang D, Xie Y, Zhang X, Yang Y. Chem. Eng. J., 2023, 454: 139931.

[5]

Sahoo S, Mondal S, Sarma D. Coord. Chem. Rev., 2022, 470: 214707.

[6]

Wang X S, Li L, Yuan D Q, Huang Y B, Cao R. J. Hazard. Mater., 2018, 344: 283.

[7]

Mauricio F G M, Silva J Y R, Talhavini M, Júnior S A, Weber I T. Microchem. J., 2019, 150: 104037.

[8]

Xu Q Y, Tan Z, Liao X W, Wang C. Chin. Chem. Lett., 2022, 33: 22.

[9]

Das A, Bej S, Pandit N R, Banerjee P, Biswas B. J. Mater. Chem. A, 2023, 11: 6090.

[10]

Li H Y, Zhao S N, Zang S Q, Li J. Chem. Soc. Rev., 2020, 49: 6364.

[11]

Shi Y, Zou Y, Khan M S, Zhang M, Yan J, Zheng X, Wang W, Xie Z. J. Mater. Chem. C, 2023, 11: 3692.

[12]

D’Alessandro D M, Smit B, Long J R. Angew. Chem. Int. Ed., 2010, 49: 6058.

[13]

Suh M P, Park H J, Prasad T K, Lim D. Chem. Rev., 2012, 112: 782.

[14]

Li J, Sculley J, Zhou H C. Chem. Rev., 2012, 112: 869.

[15]

Li J, Kuppler R J, Zhou H C. Chem. Soc. Rev., 2009, 38: 1477.

[16]

Siegelman R L, Kim E J, Long J R. Nat. Mater., 2021, 20: 1060.

[17]

Rieth A J, Yang S, Wang E N, Dincă M. ACS Central Science, 2017, 3: 668.

[18]

Furukawa H, Gándara F, Zhang Y-B, Jiang J, Queen W L, Hudson M R, Yaghi O M. J. Am. Chem. Soc., 2014, 136: 4369.

[19]

Yamazaki Y, Miyaji M, Ishitani O. J. Am. Chem. Soc., 2022, 144: 6640.

[20]

Tombesi A, Pettinari C. Inorganics, 2021, 9: 81.

[21]

Wang Q, Gao Q Y, Al-Enizi A M, Nafady A, Ma S Q. Inorg. Chem. Front., 2020, 7: 300.

[22]

Konnerth H, Matsagar B M, Chen S S, Prechtl M H G, Shieh F K, Wu K C W. Coord. Chem. Rev., 2020, 416: 213319.

[23]

Zhu L, Liu X Q, Jiang H L, Sun L B. Chem. Rev., 2017, 117: 8129.

[24]

Lee J, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T. Chem. Soc. Rev., 2009, 38: 1450.

[25]

Niu L, Wu T Z, Chen M, Yang L, Yang J G, Wang Z X, Kornyshev A A, Jiang H L, Bi S, Feng G. Adv. Mater., 2022, 34: 2200999.

[26]

Qiu T, Liang Z, Guo W, Tabassum H, Gao S, Zou R Q. ACS Energy Lett., 2020, 5: 520.

[27]

Liang Z B, Qu C, Guo W, Zou R, Xu Q. Adv. Mater., 2018, 30: 1702891.

[28]

Chaemchuen S, Xiao X, Klomkliang N, Yusubov M S, Verpoort F. Nanomaterials, 2018, 8: 661.

[29]

Rojas S, Horcajada P. Chem. Rev., 2020, 120: 8378.

[30]

Mon M, Bruno R, Ferrando-Soria J, Armentano D, Pardo E. J. Mater. Chem. A, 2018, 6: 4912.

[31]

Li J, Wang X, Zhao G, Chen C, Chai Z, Alsaedi A, Hayat T, Wang X. Chem. Soc. Rev., 2018, 47: 2322.

[32]

Mohan B, Priyanka, Singh G, Chauhan A, Pombeiro A J L, Ren P. J. Hazard. Mater., 2023, 453: 131324.

[33]

Jia C, He T, Wang G-M. Coord. Chem. Rev., 2023, 476: 214930.

[34]

Xian T, Meng Q, Gao F, Hu M, Wang X. Coord. Chem. Rev., 2023, 474: 214866.

[35]

Liu X-Y, Lustig W P, Li J. ACS Energy Lett., 2020, 5: 2671.

[36]

Lustig W P, Mukherjee S, Rudd N D, Desai A V, Li J, Ghosh S K. Chem. Soc. Rev., 2017, 46: 3242.

[37]

Wei Z, Gu Z Y, Arvapally R K, Chen Y P, McDougald R N Jr., Ivy J F, Yakovenko A A, Feng D, Omary M A, Zhou H C. J. Am. Chem. Soc., 2014, 136: 8269.

[38]

Sun Q, Qin L, Lai C, Liu S, Chen W, Xu F, Ma D, Li Y, Qian S, Chen Z, Chen W, Ye H. J. Hazard. Mater., 2023, 447: 130848.

[39]

Liu W, Huang X, Xu C, Chen C, Yang L, Dou W, Chen W, Yang H, Liu W. Chem. Eur. J., 201, 22: 18769.

[40]

Goswami R, Mandal S C, Seal N, Pathak B, Neogi S. J. Mater. Chem. A, 2019, 7: 19471.

[41]

Goswami R, Das S, Seal N, Pathak B, Neogi S. ACS Appl. Mater. Interfaces, 2021, 13: 34012.

[42]

Afshariazar F, Morsali A. J. Mater. Chem. C, 2021, 9: 12849.

[43]

Bhattacharjee S, Bera S, Das R, Chakraborty D, Basu A, Banerjee P, Ghosh S, Bhaumik A. ACS Appl. Mater. Interfaces, 2022, 14: 20907.

[44]

Zhang X, Luo X, Zhang N, Wu J, Huang Y-Q. Inorg. Chem. Front., 2017, 4: 1888.

[45]

He H, Song Y, Sun F, Bian Z, Gao L, Zhu G. J. Mater. Chem. A, 2015, 3: 16598.

[46]

Hu Z, Deibert B J, Li J. Chem. Soc. Rev., 2014, 43: 5815.

[47]

Cui Y, Yue Y, Qian G, Chen B. Chem. Rev., 2012, 112: 1126.

[48]

Nagarkar S S, Desai A V, Ghosh S K. Chem. Commun., 2014, 50: 8915.

[49]

Wang B, Lv X-L, Feng D, Xie L-H, Zhang J, Li M, Xie Y, Li J-R, Zhou H-C. J. Am. Chem. Soc., 201, 138: 6204.

[50]

Wu D, Zhou K, Tian J, Liu C, Jiang F, Yuan D, Chen Q, Hong M. J. Mater. Chem. C, 2020, 8: 9828.

[51]

Gu Y-N, Lu J-F, Liu H, Zhao B, Zhou X-H, Zhao Y-Q, Sun Q-Z, Zhang B-G. Cryst. Growth Des., 2022, 22: 4874.

[52]

Chen L L, Cheng Z H, Peng X Y, Qiu G Q, Wang L. Anal. Methods, 2021, 14: 44.

[53]

Kamal S, Khalid M, Khan M S, Shahid M. Coord. Chem. Rev., 2023, 474: 214859.

[54]

Sun Q, Yang K, Ma W, Zhang L, Yuan G. Inorg. Chem. Front., 2020, 7: 4387.

[55]

Liu W, Qiao J, Gu J, Liu Y. Inorg. Chem., 2023, 62: 1272.

[56]

Nagarkar S S, Joarder B, Chaudhari A K, Mukherjee S, Ghosh S K. Angew. Chem. Int. Ed., 2013, 52: 2881.

[57]

Gu Y, Lin R, Luo X, Liu Y. Chem. Res. Chinese Universities, 2023, 39(2): 305.

[58]

Li W, Qiao J, Liu X, Liu Y. Chem. J. Chinese Universities, 2022, 43(1): 20210654.

[59]

Li W, Liu X, Li G, Liu Y. Chem. Res. Chinese Universities, 2023, 39(6): 1005.

[60]

Qiao J, Liu X, Zhang L, Eubank J F, Liu X, Liu Y. J. Am. Chem. Soc., 2022, 144: 17054.

AI Summary AI Mindmap
PDF

151

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/