Enhanced Removal of Phenols by MIZ-Cu Nanozyme Exhibiting Laccase-like Activity and Broader Adaptability to Temperature and pH Conditions

Yunlong Wang , Yue Sun , Le Wang , Hao Zhang , Jiakang Hu , Yongxin Li

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (6) : 1111 -1118.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (6) : 1111 -1118. DOI: 10.1007/s40242-023-3224-9
Article

Enhanced Removal of Phenols by MIZ-Cu Nanozyme Exhibiting Laccase-like Activity and Broader Adaptability to Temperature and pH Conditions

Author information +
History +
PDF

Abstract

Phenolic compounds, classified as persistent organic pollutants, pose a significant threat to both human health and environmental safety. Therefore, the efficient removal of phenolic substances from water is of paramount importance. Laccase, a multicopper oxidase, is commonly utilized for the efficient removal of phenolic contaminants from water due to its highly effective catalytic activity towards phenolic compounds. However, natural laccase exhibits certain limitations that impede its practical implementation in industrial settings, including a restricted pH activity range, diminished enzymatic efficacy at elevated temperatures, and substantial cost implications. In this work, we prepared a nanozyme (MIZ-Cu, MIZ: 2-methylimidazole) with laccase-like activity by coordinating 2-methylimidazole and copper. This nanozyme overcomes the deactivation issues observed in natural laccase under high temperature and alkaline conditions. The catalytic activity of the MIZ-Cu towards phenolic compounds surpasses that of natural laccase across a wide range of temperature and pH conditions. Under pH=9, 80 °C, and 500 mmol/L NaCl conditions, the removal rate of four phenols (catechol, hydroquinone, resorcinol, and phloroglucinol) by MIZ-Cu was much higher than that of natural laccase. The results also demonstrate exceptional removal rates in natural aquatic environments, thereby presenting a promising approach for the treatment of phenol-containing wastewater originating from industrial facilities.

Keywords

Nanozyme / Laccase / Phenol / Pollutant removal / Wastewater treatment

Cite this article

Download citation ▾
Yunlong Wang, Yue Sun, Le Wang, Hao Zhang, Jiakang Hu, Yongxin Li. Enhanced Removal of Phenols by MIZ-Cu Nanozyme Exhibiting Laccase-like Activity and Broader Adaptability to Temperature and pH Conditions. Chemical Research in Chinese Universities, 2023, 39(6): 1111-1118 DOI:10.1007/s40242-023-3224-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Qiu N, Liu Y, Guo R. ACS Appl. Mater. Interfaces, 2020, 12: 15553.

[2]

Sebei H, Minh D P, Lyczko N, Sharrock P, Nzihou A. Environ. Technol., 2017, 38: 2611.

[3]

Yang K Y, Xing J C, Chang J M, Gu F, Li Z, Huang Z H, Cai L P. Polymers, 2020, 12: 2496.

[4]

Liu L, Li C, Lai R T, Li H X, Lai L S, Liu X N. Ecotoxicol. Environ. Saf., 2022, 245: 114113.

[5]

Geng L L, Chen B B, Yang J H, Shui C L, Ye S S, Fu J L, Zhang N W, Xie J R, Chen B H. Appl. Catal., 2020, 604: 117774.

[6]

Liu F Y, Zhang H P, Huang H X, Yan Y. J. Hazard. Mater., 2020, 384: 121246.

[7]

Rocha R P, Soares O, Orfao J J M, Pereira M F R, Figueiredo J L. Catalysts, 2021, 11: 578.

[8]

Nazos T T, Kokarakis E J, Ghanotakis D F. Photosynth. Res., 2017, 131: 31.

[9]

Varma R J, Gaikwad B G. Int. Biodeterior. Biodegrad., 2009, 63: 539.

[10]

Miniere M, Boutin O, Soric A. Environ. Sci. Pollut. Res., 2017, 24: 7693.

[11]

Justino C, Marques A G, Duarte K R, Duarte A C, Pereira R, Santos T R, Freitas A C. Environ. Sci. Pollut. Res., 2010, 17: 650.

[12]

Bhatt P, Bhatt K, Chen W J, Huang Y H, Xiao Y, Wu S Y, Lei Q Q, Zhong J F, Zhu X X, Chen S H. J. Hazard. Mater., 2023, 443: 130319.

[13]

Jiang S, Ren D J, Wang Z B, Zhang S Q, Zhang X Q, Chen W S. Ecotoxicol. Environ. Saf., 2022, 234: 113366.

[14]

Wang F F, Yu X X, Zhao G T. Chem. Pap., 2021, 75: 725.

[15]

Kadam A A, Saratale G D, Ghodake G S, Saratale R G, Shahzad A, Magotra V K, Kumar M, Palem R R, Sung J S. Chemosensors, 2022, 10: 58.

[16]

Palmieri G, Cennamo G, Faraco V, Amoresano A, Sannia G, Giardina P. Enzyme Microb. Technol., 2003, 33: 220.

[17]

Nabar S D, Singhal R S. Process Biochem., 2022, 122: 181.

[18]

Jones S M, Solomon E I. Cell. Mol. Life Sci., 2015, 72: 869.

[19]

Polak J, Wilkolazka A J. Process Biochem., 2012, 47: 1295.

[20]

Su J, Noro J, Silva S, Fu J J, Wang Q, Ribeiro A, Silva C, Paulo A C. React. Funct. Polym., 2019, 136: 25.

[21]

Su J, Castro T G, Noro J, Fu J J, Wang Q, Silva C, Paulo A C. Ultrason. Sonochem., 2018, 48: 275.

[22]

Su J, Noro J, Fu J J, Wang Q, Silva C, Paulo A C. Process Biochem., 2019, 77: 77.

[23]

Mokhtar A, Nishioka T, Matsumoto H, Kitada S, Ryuno N, Okobira T. Int. J. Biol. Macromol., 2019, 130: 737.

[24]

Tamang M, Paul K K. Water Sci. Technol., 2022, 85: 449.

[25]

Singh R L, Singh R P. Advances in Biological Treatment of Industrial Waste Water and Their Recycling for a Sustainable Future, 2019, Singapore: Springer.

[26]

Zhang Y, Qin L, Cui Y, Liu W F, Liu X G, Yang Y Z. New Carbon Mater., 2020, 35: 220.

[27]

Lei L L, Yang Y D, Huang H, Li Y X. New J. Chem., 2022, 46: 3541.

[28]

Huang H, Li M N, Hao M W, Yu L L, Li Y X. Talanta, 2021, 235: 122775.

[29]

Zhang X L, Wu D, Wu Y N, Li G L. Biosens. Bioelectron., 2021, 172: 112776.

[30]

Wang Q, Wang X Y, Wei H. Anal. Chem., 2022, 94: 10198.

[31]

Wang J H, Huang R L, Qi W, Su R X, Binks B P, He Z M. Appl. Catal. B, 2019, 254: 452.

[32]

Ge H R, Zhang H L. Nanomaterials, 2022, 12: 1596.

[33]

Li Y X, Sun Y, Bai J, Chen S Y, Jia X, Huang H, Dong J. Chin. J. Anal. Chem., 2023, 51: 100162.

[34]

Li M N, Xie Y F, Song D H, Huang H, Li Y X. Talanta, 2023, 252: 123853.

[35]

Li M N, Xie Y F, Lei L L, Huang H, Li Y X. Sens. Actuators B, 2022, 357: 131429.

[36]

Lewis R W, Malic N, Saito K, Cameron N R, Evans R A. Macromol. Rapid Commun., 2020, 41: 2000366.

AI Summary AI Mindmap
PDF

170

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/