A Highly Efficient Ni/Al2O3-LaO x Catalyst for the Reductive Amination of Furfural to Furfurylamine: the Promoting Effect of La

Yinze Yang , Liyan Zhang , Leilei Zhou , Haiyang Cheng , Fengyu Zhao

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (1) : 36 -46.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (1) : 36 -46. DOI: 10.1007/s40242-023-3216-9
Article

A Highly Efficient Ni/Al2O3-LaO x Catalyst for the Reductive Amination of Furfural to Furfurylamine: the Promoting Effect of La

Author information +
History +
PDF

Abstract

The reductive amination of furfural to furfurylamine is an important and still challenging topic in the field of biomass conversion. In this work, we prepared a series of Ni/Al2O3-LaO x catalysts by co-precipitation method, the role of La played in promoting the catalytic performances of reductive amination furfural was discussed based on the changes in the electronic state of Ni species, acidity, and Ni particle size. The catalytic activity and the selectivity of furfurylamine are highly dependent on the surface properties and the structure of the catalyst. The addition of La promoted the amount of strong acidic sites and the H2 dissociation and spillover on the surface, thus inducing the improvement of the catalytic activity and furfurylamine selectivity. The Ni/Al2O3-0.5LaO x catalyst with suitable acid sites gave a high yield of furfurylamine (94.9%) under mild reaction conditions. Moreover, the catalyst could be recycled five times without significant loss in activity. The Ni/Al2O3-LaO x catalyst is of great promise in the production of amines via reductive amination reaction.

Keywords

Reductive amination / Furfural / Nickel catalyst / Furfurylamine / Lanthanum

Cite this article

Download citation ▾
Yinze Yang, Liyan Zhang, Leilei Zhou, Haiyang Cheng, Fengyu Zhao. A Highly Efficient Ni/Al2O3-LaO x Catalyst for the Reductive Amination of Furfural to Furfurylamine: the Promoting Effect of La. Chemical Research in Chinese Universities, 2024, 40(1): 36-46 DOI:10.1007/s40242-023-3216-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Luo N, Montini T, Zhang J, Fornasiero P, Fonda E, Hou T, Nie W, Lu J, Liu J, Heggen M, Lin L, Ma C, Wang M, Fan F, Jin S, Wang F. Nat. Energy, 2019, 4: 575.

[2]

Climent M J, Corma A, Iborra S. Green Chem., 2014, 16: 516.

[3]

Bozell J J, Petersen G R. Green Chem., 2010, 12: 539.

[4]

Li H, Yang S, Saravanamurugan S, Riisager A. ACS Catal., 2017, 7: 3010.

[5]

Zhuang X, Liu J, Zhong S, Ma L. Green Chem., 2022, 24: 271.

[6]

van Putten R J, van der Waal J C, de Jong E, Rasrendra C B, Heeres H J, de Vries J G. Chem. Rev., 2013, 113: 1499.

[7]

Carnevali D, Guévremont O, Rigamonti M G, Stucchi M, Cavani F, Patience G S. ACS Sustain. Chem. Eng., 2018, 6: 5580.

[8]

Irrgang T, Kempe R. Chem. Rev., 2020, 120: 9583.

[9]

Dunbabin A, Subrizi F, Ward J M, Sheppard T D, Hailes H C. Green Chem., 2017, 19: 397.

[10]

Chatterjee M, Ishizaka T, Kawanami H. Green Chem., 201, 18: 487.

[11]

Wang Y, Yang X, Zheng H, Li X, Zhu Y, Li Y. Mol. Catal., 2019, 463: 130.

[12]

Mariscal R, Maireles-Torres P, Ojeda M, Sádaba I, López Granados M. Energy Environ. Sci., 201, 9: 1144.

[13]

Xie C, Song J, Hua M, Hu Y, Huang X, Wu H, Yang G, Han B. ACS Catal., 2020, 10: 7763.

[14]

Liang G, Wang A, Li L, Xu G, Yan N, Zhang T. Angew. Chem. Int. Ed., 2017, 56: 3050.

[15]

Komanoya T, Kinemura T, Kita Y, Kamata K, Hara M. J. Am. Chem. Soc., 2017, 139: 11493.

[16]

Dong C, Wang H, Du H, Peng J, Cai Y, Guo S, Zhang J, Samart C, Ding M. Mol. Catal., 2020, 482: 110755.

[17]

Zhou K, Chen B, Zhou X, Kang S, Xu Y, Wei J. ChemCatChem, 2019, 11: 5562.

[18]

Sheng M, Fujita S, Yamaguchi S, Yamasaki J, Nakajima K, Yamazoe S, Mizugaki T, Mitsudome T. JACS Au, 2021, 1: 501.

[19]

Pan Z, Zhang Q, Wang W, Wang L, Wang G-H. ACS Sustain. Chem. Eng., 2022, 10: 3777.

[20]

Gokhale T A, Raut A B, Bhanage B M. Mol. Catal., 2021, 510: 111667.

[21]

Yuan H, Li J P, Su F, Yan Z, Kusema B T, Streiff S, Huang Y, Pera-Titus M, Shi F. ACS Omega, 2019, 4: 2510.

[22]

Dong C, Wu Y, Wang H, Peng J, Li Y, Samart C, Ding M. ACS Sustain. Chem. Eng., 2021, 9: 7318.

[23]

Bhunia M K, Chandra D, Abe H, Niwa Y, Hara M. ACS Appl. Mater. Interfaces, 2022, 14: 4144.

[24]

Xue Z, Wu S, Fu Y, Luo L, Li M, Li Z, Shao M, Zheng L, Xu M, Duan H. J. Energy Chem., 2023, 76: 239.

[25]

Fischer A, Maciejewski M, Burgi T, Mallat T, Baiker A. J. Catal., 1999, 183: 373.

[26]

Guo W, Wang Z-Q, Xiang S, Jing Y, Liu X, Guo Y, Gong X-Q, Wang Y. Chin. J. Catal., 2023, 47: 181.

[27]

Yogita, Rao K T V, Kumar P M, Lingaiah N. Sustain. Energ. Fuels, 2022, 6: 4692.

[28]

Liu J, Zhu Y, Wang C, Singh T, Wang N, Liu Q, Cui Z, Ma L. Green Chem., 2020, 22: 7387.

[29]

Manzoli M, Gaudino E C, Cravotto G, Tabasso S, Baig R B N, Colacino E, Varma R S. ACS Sustain. Chem. Eng., 2019, 7: 5963.

[30]

Luo D, He Y, Yu X, Wang F, Zhao J, Zheng W, Jiao H, Yang Y, Li Y, Wen X. J. Catal., 2021, 395: 293.

[31]

Hahn G, Kunnas P, de Jonge N, Kempe R. Nat. Catal., 2018, 2: 71.

[32]

Wang H, Zhang Y, Luo D, Wang H, He Y, Wang F, Wen X. Mol. Catal., 2023, 536: 112914.

[33]

Zhang J., Yang J., Li X., Mu B., Liu H., Xia C., Wang A., Huang Z., Green Synth. Catal., 2023, DOI: https://doi.org/10.1016/j.gresc.2023.02.003

[34]

Song W, Wan Y, Li Y, Luo X, Fang W, Zheng Q, Ma P, Zhang J, Lai W. Catal. Sci. Technol., 2022, 12: 7208.

[35]

Yang Y, Zhou L, Wang X, Zhang L, Cheng H, Zhao F. Nano Res., 2023, 16: 3719.

[36]

Ma Y, Su Z, Tang N, Chen S, Wang W, Yuan J, Cao Z, He H, Cong Y. Chem. Phys. Lett., 2021, 775: 138604.

[37]

Cui Y, Zhang H, Xu H, Li W. Appl. Catal. A: Gen., 2007, 331: 60.

[38]

Mazumder J, de Lasa H. Appl. Catal. B: Environ., 2014, 160/161: 67.

[39]

Sanchezsanchez M, Navarro R, Fierro J. Catal. Today, 2007, 129: 336.

[40]

Martínez R, Romero E, Guimon C, Bilbao R. Appl. Catal. A: Gen., 2004, 274: 139.

[41]

Al-Mubaddel F S, Kumar R, Sofiu M L, Frusteri F, Ibrahim A A, Srivastava V K, Kasim S O, Fakeeha A H, Abasaeed A E, Osman A I, Al-Fatesh A S. Int. J. Hydrogen Energy, 2021, 46: 14225.

[42]

Song J H, Yoo S, Yoo J, Park S, Gim M Y, Kim T H, Song I K. Mol. Catal., 2017, 434: 123.

[43]

Boudjeloud M, Boulahouache A, Rabia C, Salhi N. Int. J. Hydrogen Energ., 2019, 44: 9906.

[44]

Brussino P, Bortolozzi J P, Dalla Costa B, Banús E D, Ulla M A. Appl. Catal. A: Gen., 2019, 575: 1.

[45]

Keghouche N, Chettibi S, Latrèche F, Bettahar M M, Belloni J, Marignier J L. Radiat. Phys. Chem., 2005, 74: 185.

[46]

Sepehri S, Rezaei M, Garbarino G, Busca G. Int. J. Hydrogen Energy, 201, 41: 8855.

[47]

Xu L, Mi W, Su Q. J. Nat. Gas Chem., 2011, 20: 287.

[48]

Melchor-Hernández C, Gómez-Cortés A, Díaz G. Fuel, 2013, 107: 828.

[49]

Qin H, Guo C, Wu Y, Zhang J. Korean J. Chem. Eng., 2014, 31: 1168.

[50]

Hossain M M, Lopez D, Herrera J, de Lasa H I. Catal. Today, 2009, 143: 179.

[51]

Mahata N, Cunha A F, Órfão J J M, Figueiredo J L. Appl. Catal. A: Gen., 2008, 351: 204.

[52]

Lin W, Cheng H, He L, Yu Y, Zhao F. J. Catal., 2013, 303: 110.

[53]

Damyanova S, Daza L, Fierro J L G. J. Catal., 199, 159: 150.

[54]

Quindimil A, De-La-Torre U, Pereda-Ayo B, González-Marcos J A, González-Velasco J R. Appl. Catal. B: Environ., 2018, 238: 393.

[55]

Chen C, Wu D, Liu P, Xia H, Zhou M, Hou X, Jiang J. React. Chem. Eng., 2021, 6: 559.

[56]

Krupka J, Dluhoš L, Mrózek L. Chem. Eng. Technol., 2017, 40: 870.

[57]

Liu Y, Zhao J, He Y, Feng J, Wu T, Li D. J. Catal., 2017, 348: 135.

[58]

Bailón-García E, Carrasco-Marín F, Pérez-Cadenas A F, Maldonado-Hódar F J. Catal. Commun., 201, 82: 36.

AI Summary AI Mindmap
PDF

178

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/