A Highly Efficient Ni/Al2O3-LaO x Catalyst for the Reductive Amination of Furfural to Furfurylamine: the Promoting Effect of La

Yinze Yang, Liyan Zhang, Leilei Zhou, Haiyang Cheng, Fengyu Zhao

Chemical Research in Chinese Universities ›› 2023, Vol. 40 ›› Issue (1) : 36-46.

Chemical Research in Chinese Universities ›› 2023, Vol. 40 ›› Issue (1) : 36-46. DOI: 10.1007/s40242-023-3216-9
Article

A Highly Efficient Ni/Al2O3-LaO x Catalyst for the Reductive Amination of Furfural to Furfurylamine: the Promoting Effect of La

Author information +
History +

Abstract

The reductive amination of furfural to furfurylamine is an important and still challenging topic in the field of biomass conversion. In this work, we prepared a series of Ni/Al2O3-LaO x catalysts by co-precipitation method, the role of La played in promoting the catalytic performances of reductive amination furfural was discussed based on the changes in the electronic state of Ni species, acidity, and Ni particle size. The catalytic activity and the selectivity of furfurylamine are highly dependent on the surface properties and the structure of the catalyst. The addition of La promoted the amount of strong acidic sites and the H2 dissociation and spillover on the surface, thus inducing the improvement of the catalytic activity and furfurylamine selectivity. The Ni/Al2O3-0.5LaO x catalyst with suitable acid sites gave a high yield of furfurylamine (94.9%) under mild reaction conditions. Moreover, the catalyst could be recycled five times without significant loss in activity. The Ni/Al2O3-LaO x catalyst is of great promise in the production of amines via reductive amination reaction.

Keywords

Reductive amination / Furfural / Nickel catalyst / Furfurylamine / Lanthanum

Cite this article

Download citation ▾
Yinze Yang, Liyan Zhang, Leilei Zhou, Haiyang Cheng, Fengyu Zhao. A Highly Efficient Ni/Al2O3-LaO x Catalyst for the Reductive Amination of Furfural to Furfurylamine: the Promoting Effect of La. Chemical Research in Chinese Universities, 2023, 40(1): 36‒46 https://doi.org/10.1007/s40242-023-3216-9

References

[1]
Luo N, Montini T, Zhang J, Fornasiero P, Fonda E, Hou T, Nie W, Lu J, Liu J, Heggen M, Lin L, Ma C, Wang M, Fan F, Jin S, Wang F. . Nat. Energy, 2019, 4: 575,
CrossRef Google scholar
[2]
Climent M J, Corma A, Iborra S. . Green Chem., 2014, 16: 516,
CrossRef Google scholar
[3]
Bozell J J, Petersen G R. . Green Chem., 2010, 12: 539,
CrossRef Google scholar
[4]
Li H, Yang S, Saravanamurugan S, Riisager A. . ACS Catal., 2017, 7: 3010,
CrossRef Google scholar
[5]
Zhuang X, Liu J, Zhong S, Ma L. . Green Chem., 2022, 24: 271,
CrossRef Google scholar
[6]
van Putten R J, van der Waal J C, de Jong E, Rasrendra C B, Heeres H J, de Vries J G. . Chem. Rev., 2013, 113: 1499,
CrossRef Google scholar
[7]
Carnevali D, Guévremont O, Rigamonti M G, Stucchi M, Cavani F, Patience G S. . ACS Sustain. Chem. Eng., 2018, 6: 5580,
CrossRef Google scholar
[8]
Irrgang T, Kempe R. . Chem. Rev., 2020, 120: 9583,
CrossRef Google scholar
[9]
Dunbabin A, Subrizi F, Ward J M, Sheppard T D, Hailes H C. . Green Chem., 2017, 19: 397,
CrossRef Google scholar
[10]
Chatterjee M, Ishizaka T, Kawanami H. . Green Chem., 2016, 18: 487,
CrossRef Google scholar
[11]
Wang Y, Yang X, Zheng H, Li X, Zhu Y, Li Y. . Mol. Catal., 2019, 463: 130,
CrossRef Google scholar
[12]
Mariscal R, Maireles-Torres P, Ojeda M, Sádaba I, López Granados M. . Energy Environ. Sci., 2016, 9: 1144,
CrossRef Google scholar
[13]
Xie C, Song J, Hua M, Hu Y, Huang X, Wu H, Yang G, Han B. . ACS Catal., 2020, 10: 7763,
CrossRef Google scholar
[14]
Liang G, Wang A, Li L, Xu G, Yan N, Zhang T. . Angew. Chem. Int. Ed., 2017, 56: 3050,
CrossRef Google scholar
[15]
Komanoya T, Kinemura T, Kita Y, Kamata K, Hara M. . J. Am. Chem. Soc., 2017, 139: 11493,
CrossRef Google scholar
[16]
Dong C, Wang H, Du H, Peng J, Cai Y, Guo S, Zhang J, Samart C, Ding M. . Mol. Catal., 2020, 482: 110755,
CrossRef Google scholar
[17]
Zhou K, Chen B, Zhou X, Kang S, Xu Y, Wei J. . ChemCatChem, 2019, 11: 5562,
CrossRef Google scholar
[18]
Sheng M, Fujita S, Yamaguchi S, Yamasaki J, Nakajima K, Yamazoe S, Mizugaki T, Mitsudome T. . JACS Au, 2021, 1: 501,
CrossRef Google scholar
[19]
Pan Z, Zhang Q, Wang W, Wang L, Wang G-H. . ACS Sustain. Chem. Eng., 2022, 10: 3777,
CrossRef Google scholar
[20]
Gokhale T A, Raut A B, Bhanage B M. . Mol. Catal., 2021, 510: 111667,
CrossRef Google scholar
[21]
Yuan H, Li J P, Su F, Yan Z, Kusema B T, Streiff S, Huang Y, Pera-Titus M, Shi F. . ACS Omega, 2019, 4: 2510,
CrossRef Google scholar
[22]
Dong C, Wu Y, Wang H, Peng J, Li Y, Samart C, Ding M. . ACS Sustain. Chem. Eng., 2021, 9: 7318,
CrossRef Google scholar
[23]
Bhunia M K, Chandra D, Abe H, Niwa Y, Hara M. . ACS Appl. Mater. Interfaces, 2022, 14: 4144,
CrossRef Google scholar
[24]
Xue Z, Wu S, Fu Y, Luo L, Li M, Li Z, Shao M, Zheng L, Xu M, Duan H. . J. Energy Chem., 2023, 76: 239,
CrossRef Google scholar
[25]
Fischer A, Maciejewski M, Burgi T, Mallat T, Baiker A. . J. Catal., 1999, 183: 373,
CrossRef Google scholar
[26]
Guo W, Wang Z-Q, Xiang S, Jing Y, Liu X, Guo Y, Gong X-Q, Wang Y. . Chin. J. Catal., 2023, 47: 181,
CrossRef Google scholar
[27]
Yogita, Rao K T V, Kumar P M, Lingaiah N. . Sustain. Energ. Fuels, 2022, 6: 4692,
CrossRef Google scholar
[28]
Liu J, Zhu Y, Wang C, Singh T, Wang N, Liu Q, Cui Z, Ma L. . Green Chem., 2020, 22: 7387,
CrossRef Google scholar
[29]
Manzoli M, Gaudino E C, Cravotto G, Tabasso S, Baig R B N, Colacino E, Varma R S. . ACS Sustain. Chem. Eng., 2019, 7: 5963,
CrossRef Google scholar
[30]
Luo D, He Y, Yu X, Wang F, Zhao J, Zheng W, Jiao H, Yang Y, Li Y, Wen X. . J. Catal., 2021, 395: 293,
CrossRef Google scholar
[31]
Hahn G, Kunnas P, de Jonge N, Kempe R. . Nat. Catal., 2018, 2: 71,
CrossRef Google scholar
[32]
Wang H, Zhang Y, Luo D, Wang H, He Y, Wang F, Wen X. . Mol. Catal., 2023, 536: 112914,
CrossRef Google scholar
[33]
Zhang J., Yang J., Li X., Mu B., Liu H., Xia C., Wang A., Huang Z., Green Synth. Catal., 2023, DOI: https://doi.org/10.1016/j.gresc.2023.02.003
[34]
Song W, Wan Y, Li Y, Luo X, Fang W, Zheng Q, Ma P, Zhang J, Lai W. . Catal. Sci. Technol., 2022, 12: 7208,
CrossRef Google scholar
[35]
Yang Y, Zhou L, Wang X, Zhang L, Cheng H, Zhao F. . Nano Res., 2023, 16: 3719,
CrossRef Google scholar
[36]
Ma Y, Su Z, Tang N, Chen S, Wang W, Yuan J, Cao Z, He H, Cong Y. . Chem. Phys. Lett., 2021, 775: 138604,
CrossRef Google scholar
[37]
Cui Y, Zhang H, Xu H, Li W. . Appl. Catal. A: Gen., 2007, 331: 60,
CrossRef Google scholar
[38]
Mazumder J, de Lasa H. . Appl. Catal. B: Environ., 2014, 160/161: 67,
CrossRef Google scholar
[39]
Sanchezsanchez M, Navarro R, Fierro J. . Catal. Today, 2007, 129: 336,
CrossRef Google scholar
[40]
Martínez R, Romero E, Guimon C, Bilbao R. . Appl. Catal. A: Gen., 2004, 274: 139,
CrossRef Google scholar
[41]
Al-Mubaddel F S, Kumar R, Sofiu M L, Frusteri F, Ibrahim A A, Srivastava V K, Kasim S O, Fakeeha A H, Abasaeed A E, Osman A I, Al-Fatesh A S. . Int. J. Hydrogen Energy, 2021, 46: 14225,
CrossRef Google scholar
[42]
Song J H, Yoo S, Yoo J, Park S, Gim M Y, Kim T H, Song I K. . Mol. Catal., 2017, 434: 123,
CrossRef Google scholar
[43]
Boudjeloud M, Boulahouache A, Rabia C, Salhi N. . Int. J. Hydrogen Energ., 2019, 44: 9906,
CrossRef Google scholar
[44]
Brussino P, Bortolozzi J P, Dalla Costa B, Banús E D, Ulla M A. . Appl. Catal. A: Gen., 2019, 575: 1,
CrossRef Google scholar
[45]
Keghouche N, Chettibi S, Latrèche F, Bettahar M M, Belloni J, Marignier J L. . Radiat. Phys. Chem., 2005, 74: 185,
CrossRef Google scholar
[46]
Sepehri S, Rezaei M, Garbarino G, Busca G. . Int. J. Hydrogen Energy, 2016, 41: 8855,
CrossRef Google scholar
[47]
Xu L, Mi W, Su Q. . J. Nat. Gas Chem., 2011, 20: 287,
CrossRef Google scholar
[48]
Melchor-Hernández C, Gómez-Cortés A, Díaz G. . Fuel, 2013, 107: 828,
CrossRef Google scholar
[49]
Qin H, Guo C, Wu Y, Zhang J. . Korean J. Chem. Eng., 2014, 31: 1168,
CrossRef Google scholar
[50]
Hossain M M, Lopez D, Herrera J, de Lasa H I. . Catal. Today, 2009, 143: 179,
CrossRef Google scholar
[51]
Mahata N, Cunha A F, Órfão J J M, Figueiredo J L. . Appl. Catal. A: Gen., 2008, 351: 204,
CrossRef Google scholar
[52]
Lin W, Cheng H, He L, Yu Y, Zhao F. . J. Catal., 2013, 303: 110,
CrossRef Google scholar
[53]
Damyanova S, Daza L, Fierro J L G. . J. Catal., 1996, 159: 150,
CrossRef Google scholar
[54]
Quindimil A, De-La-Torre U, Pereda-Ayo B, González-Marcos J A, González-Velasco J R. . Appl. Catal. B: Environ., 2018, 238: 393,
CrossRef Google scholar
[55]
Chen C, Wu D, Liu P, Xia H, Zhou M, Hou X, Jiang J. . React. Chem. Eng., 2021, 6: 559,
CrossRef Google scholar
[56]
Krupka J, Dluhoš L, Mrózek L. . Chem. Eng. Technol., 2017, 40: 870,
CrossRef Google scholar
[57]
Liu Y, Zhao J, He Y, Feng J, Wu T, Li D. . J. Catal., 2017, 348: 135,
CrossRef Google scholar
[58]
Bailón-García E, Carrasco-Marín F, Pérez-Cadenas A F, Maldonado-Hódar F J. . Catal. Commun., 2016, 82: 36,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/