Colorimetric Recognition of 3,4-Dihydroxy-D,L-phenylalanine with Tetrapeptide-modified Copper Nanoparticles as Chiral Nanozymes

Lin Tian , Cheng Cheng , Zhenwen Zhao , Wei Liu , Li Qi

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (6) : 1092 -1099.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (6) : 1092 -1099. DOI: 10.1007/s40242-023-3193-z
Article

Colorimetric Recognition of 3,4-Dihydroxy-D,L-phenylalanine with Tetrapeptide-modified Copper Nanoparticles as Chiral Nanozymes

Author information +
History +
PDF

Abstract

The construct of artificial nanocatalyts by simulating natural enzymes and thereby bringing new properties for practical applications is still a challenging task to date. In this study, chiral tetrapeptide (L-phenylalanine-L-phenylalanine-L-cysteine-L-histidine)-engineered copper nanoparticles (FFCH@CuNPs) were fabricated as an artificial peroxidase (POD). More interestingly, the nano-catalysts exhibited chiral identification function. In comparison with other nanocatalysts like L-cysteine-, L-histidine-, chiral dipeptide (L-cysteine-L-histidine)-, or chiral tripeptide phenylalanine-L-cysteine-L-histidine)-modified CuNPs, FFCH@CuNPs demonstrated a higher POD-mimetic catalytic activity in the 3,3′,5,5′-tetramethylbenzidine (TMB)-H2O2 system and stronger enantioselectivity in the recognition of 3,4-dihydroxy-D,L-phenylalanine (D,L-DOPA) enantiomers. Considering the strength difference between the intermolecular hydrogen bonding and the π-π interactions, the principle behind the chiral discrimination of D,L-DOPA was explored. Furthermore, contents levels of surface Cu2+ ions and hydroxyl radicals were found in the FFCH@CuNPs-D-DOPA-TMB-H2O2 system than in the FFCH@CuNPs-L-DOPA-TMB-H2O2 system. Based on these results, a protocol for distinguishing between D,L-DOPA enantiomers through colorimetric recognition was established. This study provides a new insight into design and fabrication of oligopeptides@CuNPs-based chiral nanozymes with improved catalytic performance and features additional to those of natural enzymes.

Keywords

Chiral nanozyme / Copper nanoparticle / 3,4-Dihydroxy-D,L-phenylalanine (D,L-DOPA) / Enantioselectivity / Tetrapeptide ligand

Cite this article

Download citation ▾
Lin Tian, Cheng Cheng, Zhenwen Zhao, Wei Liu, Li Qi. Colorimetric Recognition of 3,4-Dihydroxy-D,L-phenylalanine with Tetrapeptide-modified Copper Nanoparticles as Chiral Nanozymes. Chemical Research in Chinese Universities, 2023, 39(6): 1092-1099 DOI:10.1007/s40242-023-3193-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xie J, Zhang X, Wang H, Zheng H, Huang Y. TrAC Trends Anal. Chem., 2012, 39: 114.

[2]

Caner H, Groner E, Levy L, Agranat I. Drug Discov. Today, 2004, 9: 105.

[3]

Jiang S, Chekini M, Qu Z B, Wang Y, Yeltik A, Liu Y, Kotlyar A, Zhang T, Li B, Demir H V, Kotov N A. J. Am. Chem. Soc., 2017, 139: 13701.

[4]

Zhang R F, Fan K L, Yan X Y. Sci. China Life Sci., 2020, 63: 1183.

[5]

Gao L Z, Zhuang J, Nie L, Zhang J B, Zhang Y, Gu N, Wang T H, Feng J, Yang D L, Perrett S, Yan X. Nat. Nanotechnol., 2007, 2: 577.

[6]

Zhang R, Zhou Y, Yan X, Fan K. Microchim. Acta, 2019, 186: 782.

[7]

Ji S F, Jiang B, Hao H G, Chen Y J, Dong J C, Mao Y, Zhang Z D, Gao R, Chen W X, Zhang R F, Liang Q, Li H J, Liu S H, Wang Y, Zhang Q H, Gu L, Duan D M, Liang M M, Wang D S, Yan X Y, Li Y D. Nat. Catal., 2021, 4: 407.

[8]

Lin S C, Wei H. Sci. China Life Sci., 2019, 62: 710.

[9]

Deng K, Chen S, Song H. Spectrochim. Acta-Part A, 2022, 270: 120847.

[10]

Ouyang Y, Biniuri Y, Fadeev M, Zhang P, Carmieli R, Vazquez-Gonzalez M, Willner I. J. Am. Chem. Soc., 2021, 143: 11510.

[11]

Chen J L Y, Pezzato C, Scrimin P, Prins L J. Chem-Eur. J., 201, 22: 7028.

[12]

Seo S H, Kim S, Han M S. Anal. Meth., 2014, 6: 73.

[13]

Zhou Y, Sun H, Xu H, Matysiak S, Ren J, Qu X. Angew. Chem. Int. Ed., 2018, 57: 16791.

[14]

Sha M, Rao L, Xu W, Qin Y, Su R, Wu Y, Fang Q, Wang H, Cui X, Zheng L, Gu W, Zhu C. Nano Lett., 2023, 23: 701.

[15]

Sun Y, Zhao C, Gao N, Ren J, Qu X. Chem. Eur. J., 2017, 23: 18146.

[16]

Zhang H, He H, Jiang X, Xia Z, Wei W. ACS Appl. Mater. Interfaces, 2018, 10: 30680.

[17]

Cheng L, Feng Y, Hu Y, Shen Y, Li C, Ren D F. Nutr., 2022, 77: 286.

[18]

Wang J, Huang R, Qi W, Su R, Binks B P, He Z. Appl. Catal. B, 2019, 254: 452.

[19]

Li M, Howson S E, Dong K, Gao N, Ren J, Scott P, Qu X. J. Am. Chem. Soc., 2014, 136: 11655.

[20]

Ma Q, Cheng C, Luo D, Qiao J, Qi L. ACS Appl. Bio Mater., 2023, 6: 1676.

[21]

Xu J, Xue Y, Jian X, Zhao Y, Dai Z, Xu J, Gao Z, Mei Y, Song Y Y. Chem. Sci., 2022, 13: 6550.

[22]

Dai Z, Guo J, Zhao C, Guo Z, Song Y Y. Anal. Chem., 2021, 93: 11515.

[23]

Nishijima H, Mori F, Kimura K, Miki Y, Kinoshita I, Nakamura T, Kon T, Suzuki C, Wakabayashi K, Tomiyama M. Neurochem. Sci., 2022, 178: 93.

[24]

Chou Y C, Shih C I, Chiang C C, Hsu C H, Yeh Y C. Sens. Actuators B-Chem., 2019, 297: 126717.

[25]

Kannan A, Radhakrishnan S. Today Commun., 2020, 25: 101330.

[26]

Zhou S, Guo J, Dai Z, Liu C, Zhao J, Gao Z, Song Y Y. Anal. Chem., 2021, 93: 12607.

[27]

Qu K, Xu J, Xue Y, Guo J, Gao Z, Song Y Y, Mei Y. Anal. Chem., 2022, 94: 588.

AI Summary AI Mindmap
PDF

186

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/