Colorimetric Recognition of 3,4-Dihydroxy-D,L-phenylalanine with Tetrapeptide-modified Copper Nanoparticles as Chiral Nanozymes
Lin Tian , Cheng Cheng , Zhenwen Zhao , Wei Liu , Li Qi
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (6) : 1092 -1099.
Colorimetric Recognition of 3,4-Dihydroxy-D,L-phenylalanine with Tetrapeptide-modified Copper Nanoparticles as Chiral Nanozymes
The construct of artificial nanocatalyts by simulating natural enzymes and thereby bringing new properties for practical applications is still a challenging task to date. In this study, chiral tetrapeptide (L-phenylalanine-L-phenylalanine-L-cysteine-L-histidine)-engineered copper nanoparticles (FFCH@CuNPs) were fabricated as an artificial peroxidase (POD). More interestingly, the nano-catalysts exhibited chiral identification function. In comparison with other nanocatalysts like L-cysteine-, L-histidine-, chiral dipeptide (L-cysteine-L-histidine)-, or chiral tripeptide phenylalanine-L-cysteine-L-histidine)-modified CuNPs, FFCH@CuNPs demonstrated a higher POD-mimetic catalytic activity in the 3,3′,5,5′-tetramethylbenzidine (TMB)-H2O2 system and stronger enantioselectivity in the recognition of 3,4-dihydroxy-D,L-phenylalanine (D,L-DOPA) enantiomers. Considering the strength difference between the intermolecular hydrogen bonding and the π-π interactions, the principle behind the chiral discrimination of D,L-DOPA was explored. Furthermore, contents levels of surface Cu2+ ions and hydroxyl radicals were found in the FFCH@CuNPs-D-DOPA-TMB-H2O2 system than in the FFCH@CuNPs-L-DOPA-TMB-H2O2 system. Based on these results, a protocol for distinguishing between D,L-DOPA enantiomers through colorimetric recognition was established. This study provides a new insight into design and fabrication of oligopeptides@CuNPs-based chiral nanozymes with improved catalytic performance and features additional to those of natural enzymes.
Chiral nanozyme / Copper nanoparticle / 3,4-Dihydroxy-D,L-phenylalanine (D,L-DOPA) / Enantioselectivity / Tetrapeptide ligand
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
/
| 〈 |
|
〉 |