Highly Durable MIL-96 Membranes via a One-step Active γ-Alumina Conversion Strategy for Gas Separation

Zhuangzhuang Gao , Baoju Li , Shuxian Ou , Dongsheng Li , Qianrong Fang , Shilun Qiu , Ming Xue

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (6) : 1084 -1091.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (6) : 1084 -1091. DOI: 10.1007/s40242-023-3177-z
Article

Highly Durable MIL-96 Membranes via a One-step Active γ-Alumina Conversion Strategy for Gas Separation

Author information +
History +
PDF

Abstract

Metal-organic frameworks (MOFs) are attractive in membrane separation due to their special pore structure and suitable aperture size. The fabrication of defect-free and robust MOF membranes with excellent durability is highly demanded but remains challenging. In this work, we report a one-step active γ-alumina conversion strategy for the facile and reliable fabrication of an MIL-96 membrane. In this case, the γ-Al2O3 sol was dip-coated and sintered on the α-Al2O3 disc as the active aluminum source and substrate for the nucleation and growth of MOF. A continuous and well-intergrown MIL-96 membrane was generated with exceptional stability due to the strong adhesion to the substrate. The resultant MIL-96 membrane yielded a satisfactory H2/CO2 permselectivity and high-temperature resistance, delivering a selectivity of 12.35 with H2 permeance of 6.20×10−7 mol·m−2·s−1·Pa−1 at 150 °C. Moreover, the probe membrane presented remarkable durability and recyclability under harsh hydrothermal conditions. This method paves the way for constructing highly stable and selective MOF membranes and could accelerate the development of advanced membrane separation technologies for gas purification and recycling in addressing the severe energy and environmental problems.

Keywords

Metal-organic framework / Membrane / Active γ-alumina / Gas separation / Hydrothermal stability

Cite this article

Download citation ▾
Zhuangzhuang Gao, Baoju Li, Shuxian Ou, Dongsheng Li, Qianrong Fang, Shilun Qiu, Ming Xue. Highly Durable MIL-96 Membranes via a One-step Active γ-Alumina Conversion Strategy for Gas Separation. Chemical Research in Chinese Universities, 2023, 39(6): 1084-1091 DOI:10.1007/s40242-023-3177-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Turner J A. Science, 2004, 305: 972.

[2]

Abdalla A M, Hossain S, Nisfindy O B, Azad A T, Dawood M, Azad A K. Energy Convers. Manage., 2018, 165: 602.

[3]

Leung D Y C, Caramanna G, Maroto-Valer M M. Renew. Sust. Energy Rev., 2014, 39: 426.

[4]

Zou X, Zhu G. Adv. Mater., 2018, 30: 1700750.

[5]

Baker R W, Low B T. Macromolecules, 2014, 47: 6999.

[6]

Yang K, Dai Y, Ruan X, Zheng W, Yang X, Ding R, He G. J. Membr. Sci., 2020, 601: 117934.

[7]

Ding R, Li Z, Dai Y, Li X, Ruan X, Gao J, Zheng W, He G. Sep. Purif. Technol., 2022, 298: 121594.

[8]

Liang B, Wang H, Shi X, Shen B, He X, Ghazi Z A, Khan N A, Sin H, Khattak A M, Li L, Tang Z. Nat. Chem., 2018, 10: 961.

[9]

Li Y, Wong E, Volodine A, van Haesendonck C, Zhang K, van der Bruggen B. J. Mater. Chem. A, 2019, 7: 19269.

[10]

Li Y, Guo Z, Li S, van der Bruggen B. Adv. Mater. Interfaces, 2021, 8: 2001671.

[11]

Gin D L, Noble R D. Science, 2011, 332: 674.

[12]

Elimelech M, Phillip W A. Science, 2011, 333: 712.

[13]

Qiu S, Xue M, Zhu G. Chem. Soc. Rev., 2014, 43: 6116.

[14]

Li Z, Yang P, Yan S, Fang Q, Xue M, Qiu S. ACS Appl. Mater. Interfaces, 2019, 11: 15748.

[15]

Ma X, Kumar P, Mittal N, Khlyustova A, Daoutidis P, Mkhoyan K A, Tsapatsis M. Science, 2018, 361: 1008.

[16]

Li L, Guo L, Pu S, Wang J, Yang Q, Zhang Z, Yang Y, Ren Q, Alnemrat S, Bao Z. Chem. Eng. J., 2019, 358: 446.

[17]

Zhao Y, Wang J, Bao Z, Xing H, Zhang Z, Su B, Yang Q, Yang Y, Ren Q. Sep. Purif. Technol., 2018, 195: 238.

[18]

Bux H, Liang F, Li Y, Cravillon J, Wiebcke M, Caro J. J. Am. Chem. Soc., 2009, 131: 16000.

[19]

Hu Y, Dong X, Nan J, Jin W, Ren X, Xu N, Lee Y M. Chem. Commun., 2011, 47: 737.

[20]

Kwon H T, Jeong H K. J. Am. Chem. Soc., 2013, 135: 10763.

[21]

Cheng Y, Datta S J, Zhou S, Jia J, Shekhah O, Eddaoudi M. Chem. Soc. Rev., 2022, 51: 8300.

[22]

Abdul Hamid M R, Qian Y, Wei R, Li Z, Pan Y, Lai Z, Jeong H-K. J. Membr. Sci., 2021, 640: 119802.

[23]

Liu X, Demir N K, Wu Z, Li K. J. Am. Chem. Soc., 2015, 137: 6999.

[24]

Shah M N, Gonzalez M A, McCarthy M C, Jeong H K. Langmuir, 2013, 29: 7896.

[25]

Shekhah O, Swaidan R, Belmabkhout Y, du Plessis M, Jacobs T, Barbour L J, Pinnau I, Eddaoudi M. Chem. Commun., 2014, 50: 2089.

[26]

Huang A S, Dou W, Caro J. J. Am. Chem. Soc., 2010, 132: 15562.

[27]

Liu Q, Wang N, Caro J, Huang A. J. Am. Chem. Soc., 2013, 135: 17679.

[28]

Yuan J, Hung W S, Zhu H, Guan K, Ji Y, Mao Y, Liu G, Lee K R, Jin W. J. Membr. Sci., 2019, 572: 20.

[29]

Nan J, Dong X, Wang W, Jin W. Microporous Mesoporous Mater., 2012, 155: 90.

[30]

Tao K, Cao L, Lin Y, Kong C, Chen L. J. Mater. Chem. A, 2013, 1: 13046.

[31]

Guo H, Zhu G, Hewitt I J, Qiu S. J. Am. Chem. Soc., 2009, 131: 1646.

[32]

Kang Z, Xue M, Fan L, Ding J, Guo L, Gao L, Qiu S. Chem. Commun., 2013, 49: 10569.

[33]

Zhang X, Liu Y, Kong L, Liu H, Qiu J, Han W, Weng L T, Yeung K L, Zhu W. J. Mater. Chem. A, 2013, 1: 10635.

[34]

Chen H, Wang X, Liu Y, Yang T, Yang N, Meng B, Tan X, Liu S. J. Membr. Sci., 2021, 640: 119851.

[35]

Reif B, Somboonvong J, Fabisch F, Kaspereit M, Hartmann M, Schwieger W. Microporous Mesoporous Mater., 2019, 276: 29.

[36]

Zhou S, Wei Y, Hou J, Ding L X, Wang H. Chem. Mater., 2017, 29: 7103.

[37]

Drobek M, Bechelany M, Vallicari C, Abou Chaaya A, Charmette C, Salvador-Levehang C, Miele P, Julbe A. J. Membr. Sci., 2015, 475: 39.

[38]

Yu J, Pan Y, Wang C, Lai Z. Chem. Eng. Sci., 201, 141: 119.

[39]

Wu T, Prasetya N, Li K. J. Membr. Sci., 2020, 615: 118493.

[40]

Zhang F, Zou X, Gao X, Fan S, Sun F, Ren H, Zhu G. Adv. Funct. Mater., 2012, 22: 3583.

[41]

Jin H, Wollbrink A, Yao R, Li Y, Caro J, Yang W. J. Membr. Sci., 201, 513: 40.

[42]

Knebel A, Friebe S, Bigall N C, Benzaqui M, Serre C, Caro J. ACS Appl. Mater. Interfaces, 201, 8: 7536.

[43]

Chen S, Liu Y, Sun Y, Xu G, Ji T, Zhang X, Wang F, Liu Y. J. Membr. Sci., 2022, 643: 120064.

[44]

Liu Y, Hori A, Kusaka S, Hosono N, Li M, Guo A, Du D, Li Y, Yang W, Ma Y, Matsuda R. Chem. - Asian J., 2019, 14: 2072.

[45]

Jin H, Mo K, Wen F, Li Y. J. Membr. Sci., 2019, 577: 129.

[46]

Yang W, Yang X, Wang Y, Hou R, Gong Q, Pan Y. J. Membr. Sci., 2022, 661: 120916.

[47]

Jian M, Qiu R, Xia Y, Lu J, Chen Y, Gu Q, Liu R, Hu C, Qu J, Wang H, Zhang X. Sci. Adv., 2020, 6: eaay3998.

[48]

Loiseau T, Lecroq L, Volkringer C, Marrot J, Férey G, Haouas M, Taulelle F, Bourrelly S, Llewellyn P L, Latroche M. J. Am. Chem. Soc., 200, 128: 10223.

[49]

Chang C H, Gopalan R, Lin Y S. J. Membr. Sci., 1994, 91: 27.

[50]

Ibrahim A, Lin Y S. Ind. Eng. Chem. Res., 201, 55: 8652.

[51]

Thornton A W, Hilder T, Hill A J, Hill J M. J. Membr. Sci., 2009, 336: 101.

[52]

Ruthven D M. Chem. Ing. Tech., 2011, 83: 44.

[53]

Benzaqui M, Pillai R S, Sabetghadam A, Benoit V, Normand P, Marrot J, Menguy N, Montero D, Shepard W, Tissot A, Martineau-Corcos C, Sicard C, Mihaylov M, Carn F, Beurroies I, Llewellyn P L, de Weireld G, Hadjiivanov K, Gascon J, Kapteijn F, Maurin G, Steunou N, Serre C. Chem. Mater., 2017, 29: 10326.

[54]

Koros W J, Zhang C. Nat. Mater., 2017, 16: 289.

[55]

Zhou S, Zou X, Sun F, Ren H, Liu J, Zhang F, Zhao N, Zhu G. Int. J. Hydrogen Energy, 2013, 38: 5338.

[56]

Pan Y, Li T, Lestari G, Lai Z. J. Membr. Sci., 2012, 390/391: 93.

[57]

Huang A, Chen Y, Liu Q, Wang N, Jiang J, Caro J. J. Membr. Sci., 2014, 454: 126.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/