Role of Conformational Entropy in Complex Macromolecular Systems

Xiaobin Dai , Hai-Xiao Wan , Xuanyu Zhang , Wenjie Wei , Wenlong Chen , Longgui Zhang , Juan Li , Li-Tang Yan

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (5) : 709 -718.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (5) : 709 -718. DOI: 10.1007/s40242-023-3174-2
Review

Role of Conformational Entropy in Complex Macromolecular Systems

Author information +
History +
PDF

Abstract

Conformation is the key to revealing the physical characteristics of macromolecular systems and receives tremendous interest from the fields of polymer physics and biological materials. The conformational entropy, related to the number of conformations of the macromolecule, plays a predominant role in the structural formation, transition, and dynamics of macromolecular systems. In this review, we present a comprehensive overview of the research, development and applications of the conformational entropy in complex macromolecular systems. We begin by discussing the physical origin of the conformational entropy based on statistical mechanics of macromolecules in classical polymer physics, and then introduce the recent progress on the predictive modeling of the conformational entropy, associated with a variety of typical macromolecular systems. Furthermore, we also highlight several principles and rules, which have been harnessed to manipulate the structural organization of complex macromolecular systems through the conformational entropy. We anticipate that this review will further promote fundamental research in polymer physics, and offer intriguing prospects for applications in complex macromolecular systems including biomacromolecules, grafted nanoparticles, and polymer nanocomposites.

Keywords

Polymer conformation / Entropy / Stiffness / External field / Confinement

Cite this article

Download citation ▾
Xiaobin Dai, Hai-Xiao Wan, Xuanyu Zhang, Wenjie Wei, Wenlong Chen, Longgui Zhang, Juan Li, Li-Tang Yan. Role of Conformational Entropy in Complex Macromolecular Systems. Chemical Research in Chinese Universities, 2023, 39(5): 709-718 DOI:10.1007/s40242-023-3174-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang Z. Macromolecules, 2017, 50: 9073.

[2]

Doi M, Edwards S F. The Theory of Polymer Dynamics, 1987, New York, Oxford: Clarendon Press

[3]

Balazs A C, Emrick T, Russell T P. Science, 200, 314: 1107.

[4]

Kim G, Lee D, Shanker A, Shao L, Kwon M S, Gidley D, Kim J, Pipe K P. Nat. Mater., 2015, 14: 295.

[5]

Noriega R, Salleo A, Spakowitz A J. Proc. Natl. Acad. Sci. USA, 2013, 110: 16315.

[6]

Nielsen C B, Holliday S, Chen H, Cryer S J, Mcculloch I. Acc. Chem. Res., 2015, 48: 2803.

[7]

Bigman L S, Levy Y. Isr. J. Chem., 2020, 60: 705.

[8]

Harano Y, Kinoshita M. Biophys. J., 2005, 89: 2701.

[9]

Harano Y, Kinoshita M. Chem. Phys. Lett., 2004, 399: 342.

[10]

Hou C, Gao L, Wang Y, Yan L-T. Nanoscale Horiz., 2022, 7: 1016.

[11]

Xu Z, Dai X, Bu X, Yang Y, Zhang X, Man X, Zhang X, Doi M, Yan L-T. ACS Nano, 2021, 15: 4608.

[12]

Zhu G, Wang Y, Gao L, Xu Z, Zhang X, Dai X, Dai L, Hou C, Yan L-T. Fundam. Res., 2021, 1: 641.

[13]

Dai X, Chen P, Zhu G, Xu Z, Zhang X, Yan L. J. Phys. Chem. Lett., 2019, 10: 7970.

[14]

Zhu G, Huang Z, Xu Z, Yan L-T. Acc. Chem. Res., 2018, 51: 900.

[15]

Zhu G, Xu Z, Yang Y, Dai X, Yan L-T. ACS Nano, 2018, 12: 9467.

[16]

Xu G, Huang Z, Chen P, Cui T, Zhang X, Miao B, Yan L-T. Small, 2017, 13: 1603155.

[17]

Huang Z, Lu C, Dong B, Xu G, Ji C, Zhao K, Yan L-T. Nanoscale, 201, 8: 1024.

[18]

Dong B, Huang Z, Chen H, Yan L-T. Macromolecules, 2015, 48: 5385.

[19]

Liu Z, Guo R, Xu G, Huang Z, Yan L-T. Nano Lett., 2014, 14: 6910.

[20]

Dong B, Guo R, Yan L-T. Macromolecules, 2014, 47: 4369.

[21]

Jiang L, Xie Q, Tsang B, Granick S. Nat. Commun., 2019, 10: 3314.

[22]

Zhong M, Wang R, Kawamoto K, Olsen B D, Johnson J A. Science, 201, 353: 1264.

[23]

Bustamante C, Marko J F, Siggia E D, Smith S. Science, 1994, 265: 1599.

[24]

Schmid F. Phys. Rev. Lett., 2013, 111: 28303.

[25]

Dai X, Zhang X, Gao L, Xu Z, Yan L-T. Nat. Commun., 2022, 13: 4094.

[26]

Xu Z, Dai X, Bu X, Yang Y, Zhang X, Man X, Zhang X, Doi M, Yan L-T. ACS Nano, 2021, 15: 4608.

[27]

Bailey E J, Winey K I. Prog. Polym. Sci., 2020, 105: 101242.

[28]

Cai L, Panyukov S, Rubinstein M. Macromolecules, 2011, 44: 7853.

[29]

Doi M. Introduction to Polymer Physics, 1996, New York: Oxford University Press

[30]

Colby R H, Rubinstein M. Polymer Physics, 2003, New York: Oxford University

[31]

Lee J Y, Shou Z, Balazs A C. Phys. Rev. Lett., 2003, 91: 136103.

[32]

Thompson R B, Ginzburg V V, Matsen M W, Balazs A C. Science, 2001, 292: 2469.

[33]

Bates F S, Fredrickson G H. Phys. Today, 1999, 52: 32.

[34]

Matsen M W, Bates F S. Macromolecules, 199, 29: 1091.

[35]

Bates F S, Fredrickson G H. Annu. Rev. Phys. Chem., 1990, 41: 525.

[36]

Detcheverry F A, Kang H, Daoulas K C, Müller M, Nealey P F, de Pablo J J. Macromolecules, 2008, 41: 4989.

[37]

Frederick K K, Marlow M S, Valentine K G, Wand A J. Nature, 2007, 448: 325.

[38]

Sheiko S S, Zhou J, Arnold J, Neugebauer D, Matyjaszewski K, Tsitsilianis C, Tsukruk V V, Carrillo J Y, Dobrynin A V, Rubinstein M. Nat. Mater., 2013, 12: 735.

[39]

Podzimek S., Multi-Angle Light Scattering: An Efficient Tool Revealing Molecular Structure of Synthetic Polymers, Wiley Online Library, 2019, 1800174

[40]

Danielsen S, Beech H K, Wang S, El-Zaatari B M, Wang X, Sapir L, Ouchi T, Wang Z, Johnson P N, Hu Y, Lundberg D J, Stoychev G, Craig S L, Johnson J A, Kalow J A, Olsen B D, Rubinstein M. Chem. Rev., 2021, 121: 5042.

[41]

Frenkel D. Nat. Mater., 2015, 14: 9.

[42]

Zhu G, Xu Z, Yan L-T. Nano Lett., 2020, 20: 5616.

[43]

Escobedo F A. Soft Matter, 2014, 10: 8388.

[44]

Flory P J. Principles of Polymer Chemistry, 1953, New York: Cornell University Press

[45]

Flory P J, Volkenstein M. Statistical Mechanics of Chain Molecules, 1969, New York: Interscience

[46]

Guth E. J. Polym. Sci., Part C: Polym. Symp., 196, 12: 89.

[47]

James H M, Guth E. J. Chem. Phys., 1943, 11: 455.

[48]

Guth E, Mark H. Monatsh. Chem., 1934, 65: 93.

[49]

Kuhn W. Kolloid-Zeitschrift, 1934, 68: 2.

[50]

Broedersz C P, Mackintosh F C. Rev. Mod. Phys., 2014, 86: 995.

[51]

Fakhri N, Mackintosh F C, Lounis B, Cognet L, Pasquali M. Science, 2010, 330: 1804.

[52]

Fakhri N, Tsyboulski D A, Cognet L, Weisman R B, Pasquali M. Proc. Natl. Acad. Sci. USA, 2009, 106: 14219.

[53]

Gittes F, Mickey B, Nettleton J, Howard J. J. Cell Biol., 1993, 120: 923.

[54]

Broedersz C P, Depken M, Yao N Y, Pollak M R, Weitz D A, Mackintosh F C. Phys. Rev. Lett., 2010, 105: 238101.

[55]

Broedersz C P, Mackintosh F C. Rev. Mod. Phys., 2014, 86: 995.

[56]

Kratky O, Porod G. Recl. Trav. Chim. Pays-Bas, 1949, 68: 1106.

[57]

Schellman J A. Biopolym. Orig. Res. Biomol., 1974, 13: 217.

[58]

Gardel M L, Nakamura F, Hartwig J H, Crocker J C, Stossel T P, Weitz D A. Proc. Natl. Acad. Sci. USA, 200, 103: 1762.

[59]

Gardel M L, Shin J H, Mackintosh F C, Mahadevan L, Matsudaira P, Weitz D A. Science, 2004, 304: 1301.

[60]

Wong I Y, Gardel M L, Reichman D R, Weeks E R, Valentine M T, Bausch A R, Weitz D A. Phys. Rev. Lett., 2004, 92: 178101.

[61]

Lai S K, Wang Y, Hida K, Cone R, Hanes J. Proc. Natl. Acad. Sci. USA, 2010, 107: 598.

[62]

Fabry B, Maksym G N, Butler J P, Glogauer M, Navajas D, Fredberg J J. Phys. Rev. Lett., 2001, 87: 148102.

[63]

Mackintosh F C, Levine A J. Phys. Rev. Lett., 2008, 100: 18104.

[64]

Deng L, Trepat X, Butler J P, Millet E, Morgan K G, Weitz D A, Fredberg J J. Nat. Mater., 200, 5: 636.

[65]

Xia F, Guo W, Mao Y, Hou X, Xue J, Xia H, Wang L, Song Y, Ji H, Ouyang Q. J. Am. Chem. Soc., 2008, 130: 8345.

[66]

Zhang R, Lee B, Stafford C M, Douglas J F, Dobrynin A V, Bockstaller M R, Karim A. Proc. Natl. Acad. Sci. USA, 2017, 114: 2462.

[67]

Mai Y, Eisenberg A. Chem. Soc. Rev., 2012, 41: 5969.

[68]

Broz P, Driamov S, Ziegler J, Ben-Haim N, Marsch S, Meier W, Hunziker P. Nano Lett., 200, 6: 2349.

[69]

Hentschel J, Kushner A M, Ziller J, Guan Z. Angew. Chem. Int. Ed., 2012, 51: 10561.

[70]

Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H. Adv. Mater., 2003, 15: 353.

[71]

Mai Y, Eisenberg A. Chem. Soc. Rev., 2012, 41: 5969.

[72]

Gronheid R, Neale P. Directed Self-Assembly of Block Co-Polymers for Nano-Manufacturing, 2015, Cambridge: Woodhead Publishing

[73]

Matsen M W. Macromolecules, 2012, 45: 2161.

[74]

Mammeri F, Le Bourhis E, Rozes L, Sanchez C. J. Mater. Chem., 2005, 15: 3787.

[75]

Jin J, Wu J, Frischknecht A L. Macromolecules, 2009, 42: 7537.

[76]

Hoheisel T N, Hur K, Wiesner U B. Prog. Polym. Sci., 2015, 40: 3.

[77]

Bockstaller M R. Prog. Polym. Sci., 2015, 100: 1.

[78]

Kang H, Detcheverry F A, Mangham A N, Stoykovich M P, Daoulas K C, Hamers R J, Müller M, de Pablo J J, Nealey P F. Phys. Rev. Lett., 2008, 100: 148303.

[79]

Curk T, Martinez-Veracoechea F J, Frenkel D, Dobnikar J. Nano Lett., 2014, 14: 2617.

[80]

Arora H, Li Z, Sai H, Kamperman M, Warren S C, Wiesner U. Macromol. Rapid Commun., 2010, 31: 1960.

[81]

Jones M R, Macfarlane R J, Lee B, Zhang J, Young K L, Senesi A J, Mirkin C A. Nat. Mater., 2010, 9: 913.

[82]

Milner S T, Witten T A, Cates M E. Macromolecules, 1988, 21: 2610.

[83]

Åqvist J, Kazemi M, Isaksen G V, Brandsdal B O. Acc. Chem. Res., 2017, 50: 199.

[84]

Jia H, Liggins J R, Chow W S. Sci. Rep., 2014, 4(1): 4142.

[85]

Madsen J J, Grime J M, Rossman J S, Voth G A. Proc. Natl. Acad. Sci. USA, 2018, 115: 8595.

[86]

Rossman J S, Jing X, Leser G P, Lamb R A. Cell, 2010, 142: 902.

[87]

Schmidt N W, Mishra A, Wang J, Degrado W F, Wong G C. J. Am. Chem. Soc., 2013, 135: 13710.

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/