Dispersity Regulation in Photo-controlled Radical Polymerization by Merging Aryl Sulfonyl Chloride Initiators and Mixed Disulfide Agents

Lu Zhang , Zexi Zhang , Mao Chen

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (5) : 816 -821.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (5) : 816 -821. DOI: 10.1007/s40242-023-3171-5
Article

Dispersity Regulation in Photo-controlled Radical Polymerization by Merging Aryl Sulfonyl Chloride Initiators and Mixed Disulfide Agents

Author information +
History +
PDF

Abstract

On-demand regulation of molecular weight distribution (MWD) is crucial to influence the properties of polymers. In this work, we reported an organocatalyzed photo-controlled radical polymerization (photo-CRP) from the tosyl chloride initiator by combining two disulfides as chain transfer agents. This novel synthetic protocol allows facile access toward well-defined polymers with tunable MWDs and predetermined molecular weights. Experiments including structural characterization, kinetic investigation and chain-extension polymerization exhibited good chain-growth control for polymers of different dispersities. Given the easy accessibility of the initiating site (sulfonyl chloride) on many aromatic sources, this work presents a promising avenue to modify such substances with polymers of tailored MWDs, chain lengths and repeating units under metal-free and mild conditions driven by light.

Keywords

Reversible deactivation radical polymerization / Photo-controlled radical polymerization / Organocatalyst / Molecular weight distribution / Polymer chemistry

Cite this article

Download citation ▾
Lu Zhang, Zexi Zhang, Mao Chen. Dispersity Regulation in Photo-controlled Radical Polymerization by Merging Aryl Sulfonyl Chloride Initiators and Mixed Disulfide Agents. Chemical Research in Chinese Universities, 2023, 39(5): 816-821 DOI:10.1007/s40242-023-3171-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Stepto R F T. Pure Appl. Chem., 2009, 81(2): 351.

[2]

Gentekos D T, Sifri R J, Fors B P. Nat. Rev. Mater., 2019, 4(12): 761.

[3]

Whitfield R, Truong N P, Messmer D, Parkatzidis K, Rolland M, Anastasaki A. Chem. Sci., 2019, 10(38): 8724.

[4]

Doncom K E B, Blackman L D, Wright D B, Gibson M I, O’Reilly R K. Chem. Soc. Rev., 2017, 46(14): 4119.

[5]

Rosenbloom S I, Gentekos D T, Silberstein M N, Fors B P. Chem. Sci., 2020, 11(5): 1361.

[6]

Xu S, Trujillo F J, Xu J, Boyer C, Corrigan N. Macromol. Rapid Commun., 2021, 42(18): 2100212.

[7]

Yadav V, Jaimes-Lizcano Y A, Dewangan N K, Park N, Li T-H, Robertson M L, Conrad J C. ACS Appl. Mater. Interfaces, 2017, 9(51): 44900.

[8]

George S, Champagne-Hartley R, Deeter G, Campbell D, Reck B, Urban D, Cunningham M. Macromolecules, 2015, 48(24): 8913.

[9]

Lynd N A, Meuler A J, Hillmyer M A. Prog. Polym. Sci., 2008, 33(9): 875.

[10]

Pan X, Tasdelen M A, Laun J, Junkers T, Yagci Y, Matyjaszewski K. Prog. Polym. Sci., 201, 62: 73.

[11]

Bates C M, Bates F S. Macromolecules, 2017, 50(1): 3.

[12]

Matyjaszewski K, Tsarevsky N V. Nat. Chem., 2009, 1(4): 276.

[13]

Moad G, Rizzardo E, Thang S H. Aust. J. Chem., 2012, 65(8): 985.

[14]

Li R, Kong W, An Z. Angew. Chem. Int. Ed., 2022, 61(26): e202202033.

[15]

An Z. ACS Macro Lett., 2020, 9(3): 350.

[16]

Li H, Zhao H, Yao L, Zhang L, Cheng Z, Zhu X. Polym. Chem., 2021, 12(15): 2335.

[17]

Gao Q, Tu K, Li H, Zhang L, Cheng Z. Sci. China Chem., 2021, 64(7): 1242.

[18]

Xu T, Zhang L, Cheng Z, Zhu X. Sci. China Chem., 2015, 58(11): 1633.

[19]

Yu H, Wang J, Shao J, Chen D, Wang S, Wang L, Yang W. Chin. J. Polym. Sci., 2018, 36(12): 1303.

[20]

Song R, Hu X, Guan P, Li J, Qian L, Wang Q. Chin. J. Polym. Sci., 2015, 33(3): 404.

[21]

Zhang X, Wu Y, Huang J, Miao X, Zhang Z, Zhu X. Chin. J. Polym. Sci., 2013, 31(4): 702.

[22]

Rosenbloom S I, Sifri R J, Fors B P. Polym. Chem., 2021, 12(34): 4910.

[23]

Antonopoulou M-N, Whitfield R, Truong N P, Wyers D, Harrisson S, Junkers T, Anastasaki A. Nat. Chem., 2022, 14(3): 304.

[24]

Whitfield R, Parkatzidis K, Truong N P, Junkers T, Anastasaki A. Chem, 2020, 6(6): 1340.

[25]

Parkatzidis K, Truong N P, Antonopoulou M N, Whitfield R, Konkolewicz D, Anastasaki A. Polym. Chem., 2020, 11(31): 4968.

[26]

Wang Z, Yan J, Liu T, Wei Q, Li S, Olszewski M, Wu J, Sobieski J, Fantin M, Bockstaller M R, Matyjaszewski K. ACS Macro Lett., 2019, 8(7): 859.

[27]

Plichta A, Zhong M, Li W, Elsen A M, Matyjaszewski K. Macromol. Chem. Phys., 2012, 213(24): 2659.

[28]

Rolland M, Truong N P, Whitfield R, Anastasaki A. ACS Macro Lett., 2020, 9(4): 459.

[29]

Liu X, Wang C-G, Goto A. Angew. Chem. Int. Ed., 2019, 58(17): 5598.

[30]

Morsbach J, Müller A H E, Berger-Nicoletti E, Frey H. Macromolecules, 201, 49(14): 5043.

[31]

Gentekos D T, Dupuis L N, Fors B P. J. Am. Chem. Soc., 201, 138(6): 1848.

[32]

Corrigan N, Manahan R, Lew Z T, Yeow J, Xu J, Boyer C. Macromolecules, 2018, 51(12): 4553.

[33]

Corrigan N, Almasri A, Taillades W, Xu J, Boyer C. Macromolecules, 2017, 50(21): 8438.

[34]

Zhou Y, Fu Y, Chen M. Chin. J. Chem., 2022, 40(19): 2305.

[35]

Zhao Y, Gong H, Jiang K, Yan S, Lin J, Chen M. Macromolecules, 2018, 51(3): 938.

[36]

Zhou H, Zhang L, Wen P, Zhou Y, Zhao Y, Zhao Q, Gu Y, Bai R, Chen M. Angew. Chem. Int. Ed., 2023, 62(27): e202304461.

[37]

Zhang L, Zhou H, Gu Y, Chen M. Macromolecules, 2023, 56(15): 6010.

[38]

Percec V, Barboiu B. Macromolecules, 1995, 28(23): 7970.

[39]

Swisher N A, Corbin D A, Miyake G M. ACS Macro Lett., 2021, 10(4): 453.

[40]

Jiang K, Han S, Ma M, Zhang L, Zhao Y, Chen M. J. Am. Chem. Soc., 2020, 142(15): 7108.

[41]

Chen K, Zhou Y, Han S, Liu Y, Chen M. Angew. Chem. Int. Ed., 2022, 61(14): e202116135.

[42]

Zeng Y, Quan Q, Wen P, Zhang Z, Chen M. Angew. Chem. Int. Ed., 2022, 61(52): e202215628.

[43]

Zhao Y, Chen Y, Zhou H, Zhou Y, Chen K, Gu Y, Chen M. Nat. Synth., 2023, 2(7): 653.

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/