Recent Advances in Helical Polyisocyanide-based Block Copolymers: Preparation, Self-assembly and Circularly Polarized Luminescence

Li Zhou , Kun Chen , Xing-Yu Zhou , Zong-Quan Wu

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (5) : 719 -725.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (5) : 719 -725. DOI: 10.1007/s40242-023-3170-6
Review

Recent Advances in Helical Polyisocyanide-based Block Copolymers: Preparation, Self-assembly and Circularly Polarized Luminescence

Author information +
History +
PDF

Abstract

Polyisocyanides and their block copolymers have widespread applications in many fields due to their unique helix and self-assembly properties. At first, the latest progress in the preparation of helical polyisocyanide-based block copolymers via the method of one-pot sequential controlled synthesis and stepwise polymerization was highlighted in this minireview. Various categories of helical polyisocyanide-based copolymers including amphiphilic block copolymers, UV-response block copolymers, π-conjugated block copolymers, etc., have been prepared successfully. Moreover, recent advances in the self-assembly and circularly polarized luminescence performance of amphiphilic and π-conjugated helical polyisocyanide-based copolymers have been introduced, respectively. We hope this minireview will not only inspire more interest in developing helical polyisocyanide-based copolymers, but also encourage further progress in the field of building artificial functional materials.

Keywords

Helical polyisocyanide / Block copolymer / Self-assemble / Circularly polarized luminescence

Cite this article

Download citation ▾
Li Zhou, Kun Chen, Xing-Yu Zhou, Zong-Quan Wu. Recent Advances in Helical Polyisocyanide-based Block Copolymers: Preparation, Self-assembly and Circularly Polarized Luminescence. Chemical Research in Chinese Universities, 2023, 39(5): 719-725 DOI:10.1007/s40242-023-3170-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Guarracino D A, Riordan J A, Barreto G M, Oldfield A L, Kouba C M, Agrinsoni D. Chem. Rev., 2019, 119: 9915.

[2]

Mergny J-L, Sen D. Chem. Rev., 2019, 119: 6290.

[3]

Ho H-A, Najari A, Leclerc M. Acc. Chem. Res., 2008, 41: 168.

[4]

Wang F, Gnewou O, Solemanifar A, Conticello V P, Egelman E H. Chem. Rev., 2022, 122: 14055.

[5]

Nakano T, Okamoto Y. Chem. Rev., 2001, 101: 401.

[6]

Yashima E, Maeda K, Furusho Y. Acc. Chem. Res., 2008, 41: 1166.

[7]

Huang H, Li W, Shi Y, Deng J. Nanoscale, 2017, 9: 6877.

[8]

Zhao Z, Wang S, Ye X, Zhang J, Wan X. ACS Macro Lett., 2017, 6: 205.

[9]

Yashima E, Maeda K, Iida H, Furusho Y, Nagai K. Chem. Rev., 2009, 109: 6102.

[10]

Liu N, Zhou L, Wu Z-Q. Acc. Chem. Res., 2021, 54: 3953.

[11]

Su Y-X, Xu L, Xu X-H, Hou X-H, Liu N, Wu Z-Q. Macromolecules, 2020, 53: 3224.

[12]

Du C, Gao D, Gao M, Yuan H, Liu X, Wang B, Xing C. ACS Appl. Mater. Interfaces, 2021, 13: 27955.

[13]

Zhai Y, Wang Y, Zhu X, Xing Z, Qi S, Wang S, Han Y, Chen Z. Macromolecules, 2021, 54: 5249.

[14]

Wu Z-Q, Song X, Li Y-X, Zhou L, Zhu Y-Y, Chen Z, Liu N. Nat. Commun., 2023, 14: 566.

[15]

Zou H, Wu Q-L, Zhou L, Hou X-H, Liu N, Wu Z-Q. Chin. J. Polym. Sci., 2021, 39: 1521.

[16]

Zhou L, He K, Liu N, Wu Z-Q. Polym. Chem., 2022, 13: 396.

[17]

Kotlarek D, Liu K, Quilis N G, Bernhagen D, Timmerman P, Kouwer P, Dostalek J. J. Phys. Chem. C, 2021, 125: 12960.

[18]

Yonehara T, Nimori S, Kumai R, Goto H. Macromolecules, 2023, 56: 2965.

[19]

Dau H, Jones G R, Tsogtgerel E, Nguyen D, Keyes A, Liu Y-S, Rauf H, Ordonez E, Puchelle V, Alhan H B, Zhao C, Harth E. Chem. Rev., 2022, 122: 14471.

[20]

Cabral H, Miyata K, Osada K, Kataoka K. Chem. Rev., 2018, 118: 6844.

[21]

Wen T, Wang H-F, Li M-C, Ho R-M. Acc. Chem. Res., 2017, 50: 1011.

[22]

Ma H, Kim K T. Macromolecules, 2020, 53: 711.

[23]

Kang S, Ryu D Y, Ringe E, Hickey R J, Park S-J. ACS Nano, 2020, 14: 12203.

[24]

Lee Y, Aplan M P, Seibers Z D, Xie R, Culp T E, Wang C, Hexemer A, Kilbey S M, Wang Q, Gomez E D. Macromolecules, 2018, 51: 8844.

[25]

Zhulina E B, Sheiko S S, Dobrynin A V, Borisov O V. Macromolecules, 2020, 53: 2582.

[26]

Li Q, Jin B, Luo Y, Li X. Chem. Res. Chinese. Universities., 2022, 38: 1368.

[27]

He J, Cao J, Chen Y, Zhang L, Tan J. ACS Macro Lett., 2020, 9: 533.

[28]

Narasimha K, Albert S K, Kim J, Kang H, Kang S, Park J, Park J, Park S-J. ACS Macro Lett., 2023, 12: 382.

[29]

Yang J, Dong Q, Liu M, Li W. Macromolecules, 2022, 55: 2171.

[30]

Zhao J, Huang W, Si P, Ulstrup J, Diao F, Zhang J. Macromol. Rapid Commun., 2018, 39: 1800125.

[31]

Quan Q, Ma M, Wang Z, Gu Y, Chen M. Angew. Chem. Int. Ed., 2021, 60: 20065.

[32]

Shen Z, Jiang Y, Wang T, Liu M. J. Am. Chem. Soc., 2015, 137: 16109.

[33]

Mai Y, An Z, Liu S. Macromol. Rapid Commun., 2022, 43: 2200481.

[34]

Zhou L, Jiang Z-Q, Xu L, Liu N, Wu Z-Q. Chin. J. Polym. Sci., 2017, 35: 1447.

[35]

Cornelissen J J L M, Fischer M, van Waes R, van Heerbeek R, Kamer P C J, Reek J N H, Sommerdijk N A J M, Nolte R J M. Polymer, 2004, 45: 7417.

[36]

Schraff S, Maity S, Schleeper L, Dong Y, Lucas S, Bakulin A A, von Hauff E, Pammer F. Polym. Chem., 2020, 11: 1852.

[37]

Zou H, Liu W, Wang C, Zhou L, Liu N, Wu Z-Q. Macromolecules, 2023, 56: 1875.

[38]

Foster S, Finlayson C E, Keivanidis P E, Huang Y-S, Hwang I, Friend R H, Otten M B J, Lu L-P, Schwartz E, Nolte R J M, Rowan A E. Macromolecules, 2009, 42: 2023.

[39]

Su M, Shi S-Y, Wang Q, Liu N, Yin J, Liu C, Ding Y, Wu Z-Q. Polym. Chem., 2015, 6: 6519.

[40]

Li S-Y, Xu L, Gao R-T, Chen Z, Liu N, Wu Z-Q. J. Mater. Chem. C, 2023, 11: 1242.

[41]

Li Y-X, Xu L, Kang S-M, Zhou L, Liu N, Wu Z-Q. Angew. Chem. Int., 2021, 60: 7174.

[42]

Xu L, Wang C, Li Y-X, Xu X-H, Zhou L, Liu N, Wu Z-Q. Angew. Chem. Int. Ed., 2020, 59: 16675.

[43]

Takei F, Hayashi H, Onitsuka K, Kobayashi N, Takahashi S. Angew. Chem. Int. Ed., 2001, 40: 4092.

[44]

Yan X, Zhang S, Peng D, Zhang P, Zhi J, Wu X, Wang L, Dong Y, Li X. Polym. Chem., 2018, 9: 984.

[45]

Fu C, Xu J, Kokotovic M, Boyer C. ACS Macro Lett., 201, 5: 444.

[46]

Menk F, Shin S, Kim K-O, Scherer M, Gehrig D, Laquai F, Choi T-L, Zentel R. Macromolecules, 201, 49: 2085.

[47]

Hui J, Wang X, Yao X, Li Z. Polym. Chem., 2022, 13: 6551.

[48]

Wang Q, Huang J, Jiang Z-Q, Zhou L, Liu N, Wu Z-Q. Polymer, 2018, 136: 92.

[49]

Wang Q, Chu B-F, Chu J-H, Liu N, Wu Z-Q. ACS Macro Lett., 2018, 7: 127.

[50]

Chen J-L, Su M, Jiang Z-Q, Liu N, Yin J, Zhu Y-Y, Wu Z-Q. Polym. Chem., 2015, 6: 4784.

[51]

Su M, Liu N, Wang Q, Wang H, Yin J, Wu Z-Q. Macromolecules, 201, 49: 110.

[52]

Li Q-W, Su Y-X, Zou H, Chen Y-Y, Zhou L, Hou X-H, Liu N, Wu Z-Q. Polym. Chem., 2020, 11: 6029.

[53]

Liu N, Ma C-H, Sun R-W, Huang J, Li C, Wu Z-Q. Polym. Chem., 2017, 8: 2152.

[54]

Xu X-H, Liu W-B, Song X, Zhou L, Liu N, Zhu Y-Y, Wu Z-Q. Polym. Chem., 2021, 12: 4838.

[55]

Anastasaki A, Oschmann B, Willenbacher J, Melker A, van Son M H C, Truong N P, Schulze M W, Discekici E H, McGrath A J, Davis T P, Bates C M, Hawker C J. Angew. Chem. Int. Ed., 2017, 56: 14483.

[56]

Gigmes D, Trimaille T. Adv. Colloid Interface Sci., 2021, 294: 102483.

[57]

Jiang Z, Blakey I, Whittaker A K. Polym. Chem., 2017, 8: 4114.

[58]

Zou H, Li Q-W, Wu Q-L, Liang W-Q, Hou X-H, Zhou L, Liu N, Wu Z-Q. Polym. Chem., 2021, 12: 3917.

[59]

Li C, Xu X, Xu L, Liu N. Polymers, 2018, 10: 936.

[60]

Kang S, Kim G-H, Park S-J. Acc. Chem. Res., 2022, 55: 2224.

[61]

Zou H, Han S-S, Li G-Q, Zhou L, Liu N, Wu Z-Q. Macromol. Rapid Commun., 2023, 44: 2300159.

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/