Functionalizable and Recyclable Aliphatic Polycarbonates Derived from Biomass Feedstocks and CO2

Yanchen Wu , Huazhong Fan , Siyi Shan , Siqi Wang , Zhongzheng Cai , Jian-Bo Zhu

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (5) : 809 -815.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (5) : 809 -815. DOI: 10.1007/s40242-023-3165-3
Article

Functionalizable and Recyclable Aliphatic Polycarbonates Derived from Biomass Feedstocks and CO2

Author information +
History +
PDF

Abstract

Two bio-based seven-membered cyclic carbonate monomers M1 and M2 were synthesized in three steps from myrcene, which could produce polycarbonates via ring-opening polymerization using metal or organic catalysts. The functionalizable olefin moieties in resulting polycarbonates have driven post-polymerization modifications via radical cross-linking and hydrogenation, enabling the resulting polymers with tunable thermal properties. More importantly, the chemical recycling of P(M)s was achieved through “monomer → polymer ⇄ dimer”, which presented a platform for the synthesis of chemically recyclable biobased polycarbonates.

Keywords

Biomass / CO2 / Polycarbonate / Functionalization / Chemical recyclability

Cite this article

Download citation ▾
Yanchen Wu, Huazhong Fan, Siyi Shan, Siqi Wang, Zhongzheng Cai, Jian-Bo Zhu. Functionalizable and Recyclable Aliphatic Polycarbonates Derived from Biomass Feedstocks and CO2. Chemical Research in Chinese Universities, 2023, 39(5): 809-815 DOI:10.1007/s40242-023-3165-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu C, Zhang X, Medda F. Waste Manage., (Oxford), 2021, 121: 42.

[2]

Li L, Luo H, Shao Z, Zhou H, Lu J, Chen J, Huang C, Zhang S, Liu X, Xia L, Li J, Wang H, Sun Y. J. Am. Chem. Soc., 2023, 145: 1847.

[3]

Bornscheuer U T. Science, 201, 351: 1154.

[4]

Shang Z, Wang R, Zhang X, Tu Y, Sheng C, Yuan H, Wen L, Li Y, Zhang J, Wang X, Yang G, Feng Y, Ren G. Sci. Total Environ., 2023, 875: 162674.

[5]

Wang Z, Ganewatta M S, Tang C. Prog. Polym. Sci., 2020, 101: 101197.

[6]

Hayes G, Laurel M, MacKinnon D, Zhao T, Houck H A, Becer C R. Chem. Rev., 2023, 123: 2609.

[7]

Haque F M, Ishibashi J S A, Lidston C A L, Shao H, Bates F S, Chang A B, Coates G W, Cramer C J, Dauenhauer P J, Dichtel W R, Ellison C J, Gormong E A, Hamachi L S, Hoye T R, Jin M, Kalow J A, Kim H J, Kumar G, LaSalle C J, Liffland S, Lipinski B M, Pang Y, Parveen R, Peng X, Popowski Y, Prebihalo E A, Reddi Y, Reineke T M, Sheppard D T, Swartz J L, Tolman W B, Vlaisavljevich B, Wissinger J, Xu S, Hillmyer M A. Chem. Rev., 2022, 122: 6322.

[8]

Ganewatta M S, Wang Z, Tang C. Nat. Rev. Chem., 2021, 5: 753.

[9]

Cywar R M, Rorrer N A, Hoyt C B, Beckham G T, Chen E Y X. Nat. Rev. Chem., 2022, 7: 83.

[10]

Zhang Q, Song M, Xu Y, Wang W, Wang Z, Zhang L. Prog. Polym. Sci., 2021, 120: 101430.

[11]

Cui S, Borgemenke J, Liu Z, Li Y. J. CO2 Util., 2019, 34: 40.

[12]

Yu W, Maynard E, Chiaradia V, Arno M C, Dove A P. Chem. Rev., 2021, 121: 10865.

[13]

Noreen A, Zia K M, Zuber M, Tabasum S, Zahoor A F. Prog. Org. Coat., 201, 91: 25.

[14]

Lu H, Dun C, Jariwala H, Wang R, Cui P, Zhang H, Dai Q, Yang S, Zhang H. J. Controlled Release, 2022, 350: 748.

[15]

Douka A, Vouyiouka S, Papaspyridi L-M, Papaspyrides C D. Prog. Polym. Sci., 2018, 79: 1.

[16]

Li H, Guillaume S M, Carpentier J-F. Chem. Eur. J., 2022, 17: e202200641.

[17]

Siragusa F, Detrembleur C, Grignard B. Polym. Chem., 2023, 14: 1164.

[18]

Liu Y, Lu X-B. Chem. Eur. J., 2023, 29: e202203635.

[19]

Liu Y, Lu X-B. J. Polym. Sci., 2022, 60: 3256.

[20]

Jehanno C, Alty J W, Roosen M, de Meester S, Dove A P, Chen E Y X, Leibfarth F A, Sardon H. Nature, 2022, 603: 803.

[21]

Zhu J-B, Watson E M, Tang J, Chen E Y X. Science, 2018, 360: 398.

[22]

Tu Y-M, Wang X-M, Yang X, Fan H-Z, Gong F-L, Cai Z, Zhu J-B. J. Am. Chem. Soc., 2021, 143: 20591.

[23]

Fan H-Z, Yang X, Chen J-H, Tu Y-M, Cai Z, Zhu J-B. Angew. Chem. Int. Ed., 2022, 61: e202117639.

[24]

Dai J, Xiong W, Du M-R, Wu G, Cai Z, Zhu J-B. Sci. China: Chem., 2023, 66: 251.

[25]

Tu Y-M, Gong F-L, Wu Y-C, Cai Z, Zhu J-B. Nat. Commun., 2023, 14: 3198.

[26]

Yang X, Fan H-Z, Cai Z, Zhang Q, Zhu J-B. Chin. J. Chem., 2022, 40: 2973.

[27]

Gandini A, Lacerda T M. Prog. Polym. Sci., 2015, 48: 1.

[28]

Wahlen C, Frey H. Macromolecules, 2021, 54: 7323.

[29]

della Monica F, Kleij A W. Polym. Chem., 2020, 11: 5109.

[30]

Wilbon P A, Chu F, Tang C. Macromol. Rapid Commun., 2013, 34: 8.

[31]

Luk S B, Azevedo L A, Maric M. React. Funct. Polym., 2021, 162: 104871.

[32]

Dev A, Rösler A, Schlaad H. Polym. Chem., 2021, 12: 3084.

[33]

Hulnik M I, Vasilenko I V, Radchenko A V, Peruch F, Ganachaud F, Kostjuk S V. Polym. Chem., 2018, 9: 5690.

[34]

Cawse J L, Stanford J L, Still R H. Polymer, 1987, 28: 368.

[35]

Wu Y-C, Fan H-Z, Zhang W, Wang M-Y, Cai Z, Zhu J-B. Macromolecules, 2022, 55: 9232.

[36]

Zhang W, Dai J, Wu Y-C, Chen J-X, Shan S-Y, Cai Z, Zhu J-B. ACS Macro Lett., 2022, 11: 173.

[37]

Behr A, Brehme V A. Adv. Synth. Catal., 2002, 344: 525.

[38]

Li C, Sablong R J, Koning C E. Angew. Chem. Int. Ed., 201, 55: 11572.

[39]

DeRosa C A, Luke A M, Anderson K, Reineke T M, Tolman W B, Bates F S, Hillmyer M A. Macromolecules, 2021, 54: 5974.

[40]

Guerin W, Diallo A K, Kirilov E, Helou M, Slawinski M, Brusson J-M, Carpentier J-F, Guillaume S M. Macromolecules, 2014, 47: 4230.

[41]

Fan H-Z, Yang X, Wu Y-C, Cao Q, Cai Z, Zhu J-B. Polym. Chem., 2023, 14: 747.

[42]

Gregory G L, Jenisch L M, Charles B, Kociok-Köhn G, Buchard A. Macromolecules, 201, 49: 7165.

[43]

Felder S E, Redding M J, Noel A, Grayson S M, Wooley K L. Macromolecules, 2018, 51: 1787.

[44]

Mees M A, Hoogenboom R. Polym. Chem., 2018, 9: 4968.

[45]

Galvin C J, Genzer J. Prog. Polym. Sci., 2012, 37: 871.

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/