High Performance Polylactide Toughened by Supertough Polyester Thermoplastic Elastomers: Properties and Mechanism

Songyang Feng , Wuchao Zhao , Jianghua He , Yuetao Zhang

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (5) : 750 -756.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (5) : 750 -756. DOI: 10.1007/s40242-023-3160-8
Article

High Performance Polylactide Toughened by Supertough Polyester Thermoplastic Elastomers: Properties and Mechanism

Author information +
History +
PDF

Abstract

It is a challenge to develop a biodegradable toughener to toughen polylactic acid (PLA) with both high strength and high toughness, since toughness and strength are mutually exclusive. Here, a series of supertough polyester thermoplastic elastomers (TPEs), poly(L/D-lactide)-b-poly(ε-caprolactone-co-δ-valerolactone)-b-poly (L/D-lactide)s (PLLA-PCVL-PLLA, L-TPEs or PDLA-PCVL-PDLA, D-TPEs), were prepared and blended with a PLLA matrix to toughen PLLA. The mechanical properties of PLLA could be regulated in a wide range by changing blending ratios and TPE structures. For PLLA blends toughened by L-TPEs, the highest elongation at break is up to 425% with the tensile strength of 33.1 MPa and the toughness of 104 MJ/m3. By the stereocomplex crystallization of PLA (sc-PLA), the tensile strength of the PLLA/D-TPE blends further increased to 41.8 MPa with a similar elongation at break (418%) and the toughness up to 128 MJ/m3. The detailed characterizations revealed a toughening mechanism: (I) the added soft segments increased the ductility of the PLLA matrix, (II) the PLLA segments of L-TPEs increased the compatibility between TPEs and PLLA matrix, and (III) the formation of sc-PLA between the PDLA segments in D-TPE and PLLA provided higher tensile strength by enhancing the strength of the crystal skeleton. The toughened PLA using TPEs can maintain original non-toxic and degradable properties, and be applied potentially in surgical sutures, and 3D-printed scaffolds.

Keywords

Super-tough polyester elastomer / Poly-L-lactic acid toughening / Biodegradable polymer / Stereocomplex crystallization

Cite this article

Download citation ▾
Songyang Feng, Wuchao Zhao, Jianghua He, Yuetao Zhang. High Performance Polylactide Toughened by Supertough Polyester Thermoplastic Elastomers: Properties and Mechanism. Chemical Research in Chinese Universities, 2023, 39(5): 750-756 DOI:10.1007/s40242-023-3160-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Moradi S, Yeganeh J K. Polym. Test., 2020, 91: 106735.

[2]

Zhou X, Deng J, Fang C, Leia W, Song Y, Zhang Z, Huang Z, Li Y. J. Mater. Sci. Technol., 2021, 60: 27.

[3]

Izraylit V, Heuchel M, Gould O E C, Kratz K, Lendlein A. Polymer, 2020, 209: 122984.

[4]

Cao X, Wang Y, Chen H, Hu J, Cui L. Composites Part B, 2021, 217: 108934.

[5]

Jing Z, Huang X, Liu X, Liao M, Zhang Z, Li Y. RSC Adv., 2022, 12: 13180.

[6]

Yang J, Pan H, Li X, Sun S, Zhang H, Dong L. RSC Adv., 2017, 7: 46183.

[7]

Hirata M, Masutani K, Kimura Y. Biomacromolecules, 2013, 14: 2154.

[8]

Ma P, Spoelstra A B, Schmit P, Lemstra P J. Eur. Polym. J., 2013, 49: 1523.

[9]

Tan B H, Muiruri J K, Li Z, He C. ACS Sustain. Chem. Eng., 201, 4: 5370.

[10]

Ma P, Hristova-Bogaerds D G, Goossens J G P, Spoelstra A B, Zhang Y, Lemstra P J. Eur. Polym. J., 2012, 48: 146.

[11]

Yeo J C C, Muiruri J K, Thitsartarn W, Lib Z, He C. Mater. Sci. Eng. C, 2018, 92: 1092.

[12]

Sun Y, Yang L, Lu X, He C. J. Mater. Chem. A, 2015, 3: 3699.

[13]

Lebarbé T, Grau É, Cramail H. Eur. Polym. J., 2015, 65: 276.

[14]

Sun Fan X, Lu X, He C. Macromol. Rapid Commun., 2019, 40: 1800047.

[15]

Wen J, Yi L, Su J, Han J. Int. J. Biol. Macromol., 2023, 231: 123419.

[16]

Srisuwan Y, Baimark Y, Suttiruengwong S. Int. J. Biomater., 2018, 2018: 1294397.

[17]

Rathi S R, Coughlin E B, Hsu S L, Golub C S, Ling G H, Tzivanis M J. Polymer, 2012, 53: 3008.

[18]

Grijpma D W, Pennings A J. Polym. Bull., 1991, 25: 335.

[19]

Zhao X, Hu H, Wang X, Yu X, Zhou W, Peng S. RSC Adv., 2020, 10: 13316.

[20]

Lin J-O, Chen W, Shen Z, Ling J. Macromolecules, 2013, 46: 7769.

[21]

Wang M, Wu Y, Li Y-D, Zeng J-B. Polym. Rev., 2017, 57: 557.

[22]

Zhao T-H, Yuan W-Q, Li Y-D, Weng Y-X, Zeng J-B. Macromolecules, 2018, 51: 2027.

[23]

Xiu H, Bai H W, Huang C M, Xu C L, Li X Y, Fu Q. Express Polym. Lett., 2013, 7: 261.

[24]

Zhang X, Koranteng E, Wu Z, Wu Q. J. Appl. Polym. Sci., 201, 133: 42983.

[25]

Yu R-L, Zhang L-S, Feng Y-H, Zhang R-Y, Zhu J. Chin. J. Polym. Sci., 2014, 32: 1099.

[26]

Kasyapi N, Bhowmick A K. RSC Adv., 2014, 4: 27439.

[27]

Mulchandani N, Masutani K, Kumar S, Yamane H, Sakurai S, Kimura Y, Katiyar V. Polym. Chem., 2021, 12: 3806.

[28]

Kim J-H, Lee J H. Polym. J., 2002, 34: 203.

[29]

Liu G-C, He Y-S, Zeng J-B, Li Q-T, Wang Y-Z. Biomacromolecules, 2014, 15: 4260.

[30]

Li T-T, Zhang H, Huang S-Y, Pei X, Lin Q, Tian S, Ma Z, Lin J-H. J. Polym. Res., 2021, 28: 156.

[31]

Pez-Rodríguez N L, Pez-Arraiza A L E, Meaurio J R S. Polym. Eng. Sci., 200, 46: 1299.

[32]

Jiang L, Wolcott M P, Zhang J. Biomacromolecules, 200, 7: 199.

[33]

Al-Itry R, Lamnawar K, Maazouz A. Polym. Degrad. Stab., 2012, 97: 1898.

[34]

Lebarbé T, Grau E, Gadenne B, Alfos C, Cramail H. ACS Sustainable Chem. Eng., 2015, 3: 283.

[35]

Xiang S, Feng L, Bian X, Zhang B, Sun B, Liu Y, Li G, Chen X. Polym. Adv. Technol., 2019, 30: 963.

[36]

Yang S, Madbouly S A, Schrader J A, Srinivasan G, Grewell D, McCabe K G, Kesslere M R, Gravesc W R. Green Chem., 2015, 17: 380.

[37]

Chen W, Qi C, Li Y, Tao H. Radiat. Phys. Chem., 2021, 180: 109239.

[38]

Hu X, Su T, Li P, Wang Z. Polym. Bull., 2018, 75: 533.

[39]

Harada M, Iida K, Okamoto K, Hayashi H, Hirano K. Polym. Eng. Sci., 2008, 48: 1359.

[40]

Lin S, Guo W, Chen C, Ma J, Wang B. Mater. Des., 2012, 36: 604.

[41]

Bian Y, Han C, Han L, Lin H, Zhang H, Biana J, Dong L. RSC Adv., 2014, 4: 41722.

[42]

Yang X, Clénet J, Xu H, Odelius K, Hakkarainen M. Macromolecules, 2015, 48: 2509.

[43]

Wang R, Wang S, Zhang Y. J. Appl. Polym. Sci., 2010, 113: 3630.

[44]

Zhao W, Li C, Yang X, He J, Pang X, Zhang Y, Men Y, Chen X. CCS Chem., 2022, 4: 1263.

[45]

Liu Y, Shao J, Sun J, Bian X, Feng L, Xiang S, Sun B, Chen Z, Li G, Chen X. Polym. Degrad. Stab., 2014, 101: 10.

[46]

Xiao X, Chevali V S, Song P, Yu B, Yang Y, Wang H. Compos. Commun., 2020, 21: 100385.

[47]

Feng L, Bian X, Li G, Chen X. Macromolecules, 2021, 54: 10163.

[48]

Shi X, Qin J, Wang L, Ren L, Rong F, Li D, Wang R, Zhang G. RSC Adv., 2018, 8: 11850.

[49]

Meredith J C, Amis E J. Macromol. Chem. Phys., 2000, 201: 733.

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/