Macrocyclic Binuclear α-Diimine Nickel Catalysts for Ethylene Polymerization

Jingshuang Yang , Yuxing Zhang , Zhongbao Jian

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (5) : 797 -802.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (5) : 797 -802. DOI: 10.1007/s40242-023-3149-3
Article

Macrocyclic Binuclear α-Diimine Nickel Catalysts for Ethylene Polymerization

Author information +
History +
PDF

Abstract

Polyolefins are globally important plastics. Molecular weight and molecular weight distribution are two key parameters for determining the properties of polyolefin materials. In this contribution, we develop a strategy for combining the macrocyclic framework and the binuclear effect into the benchmark α-diimine late transition metal catalysts, and thus macrocyclic binuclear α-diimine nickel catalysts (Ni 2-Me and Ni 2- i Pr) are prepared. Compared to the classical Brookhart’s acyclic mononuclear α-diimine nickel analogues (Ni 1-Me and Ni 1- i Pr), these nickel catalysts exhibit enhanced thermostability (up to 110 °C) and produce polyethylenes with higher molecular weights (up to 7 times) and lower branching densities (as low as 9 branches/1000C) in methylaluminoxane (MAO) activated ethylene polymerization. This translates into the ability of the catalyst to afford more linear high molecular weight polyethylenes. In particular, bimodal polyethylenes with broad molecular weight distributions (M w/M n = 8.08–14.66) are generated by the sole catalyst. This work affords diverse polyethylenes.

Keywords

Polyolefin / Nickel catalyst / Diimine ligand / Macrocyclic binuclear strategy / Bimodal polyethylene

Cite this article

Download citation ▾
Jingshuang Yang, Yuxing Zhang, Zhongbao Jian. Macrocyclic Binuclear α-Diimine Nickel Catalysts for Ethylene Polymerization. Chemical Research in Chinese Universities, 2023, 39(5): 797-802 DOI:10.1007/s40242-023-3149-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hustad P D. Science, 2009, 325: 704.

[2]

Stürzel M, Mihan S, Mülhaupt R. Chem Rev., 201, 116: 1398.

[3]

Zhou G. L., Mu H. L., Ma X., Kang X.-H., Jian Z.-B, CCS Chem., 2023, doi: https://doi.org/10.31635/ccschem.023.202202621

[4]

Zhang Y X, Zhang Y X, Hu X Q, Wang C Q, Jian Z B. ACS Catal., 2022, 12: 14304.

[5]

Johnson L K, Killian C M, Brookhart M. J. Am. Chem. Soc., 1995, 117: 6414.

[6]

Johnson L K, Mecking S, Brookhart M. J. Am. Chem. Soc., 199, 118: 267.

[7]

Chen Z, Brookhart M. Acc. Chem. Res., 2018, 51: 1831.

[8]

Wang F Z, Chen C L. Polym. Chem., 2019, 10: 2354.

[9]

Nakamura A, Ito S, Nozaki K. Chem. Rev., 2009, 109: 5215.

[10]

Zhou G L, Cui L, Mu H L, Jian Z B. Polym. Chem., 2021, 12: 3878.

[11]

Rhinehart J L, Brown L A, Long B K. J. Am. Chem. Soc., 2013, 135: 16316.

[12]

Long B K, Eagan J M, Mulzer M, Coates G W. Angew. Chem., Int. Ed., 201, 55: 7106.

[13]

Dai S Y, Sui X L, Chen C L. Angew. Chem., Int. Ed., 2015, 54: 9948.

[14]

Zhang D F, Nadres E T, Brookhart M, Daugulis O. Organometallics, 2013, 32: 5136.

[15]

Allen K E, Campos J, Daugulis O, Brookhart M. ACS Catal., 2015, 5: 456.

[16]

Xia J, Zhang Y X, Kou S Q, Jian Z B. J. Catal., 2020, 390: 30.

[17]

Zhong L, Li G L, Liang G D, Gao H Y, Wu Q. Macromolecules, 2017, 50: 2675.

[18]

Zhong L, Du C, Liao G F, Liao H, Zheng H D, Wu Q, Gao H Y. J. Catal., 2019, 375: 113.

[19]

Hu X Q, Kang X H, Jian Z B. Angew. Chem., Int. Ed., 2022, 61: e202207363.

[20]

Rhinehart J L, Mitchell N E, Long B K. ACS Catal., 2014, 4: 2501.

[21]

Liu F S, Hu H B, Xu Y, Guo L H, Zai S B, Song K M, Gao H Y, Zhang L, Zhu F M, Wu Q. Macromolecules, 2009, 42: 7789.

[22]

Zhang Y X, Wang C Q, Mecking S, Jian Z B. Angew. Chem., Int. Ed., 2020, 59: 14296.

[23]

Manigrasso J, Chillon I, Genna V, Vidossich P, Somarowthu S, Pyle A M, de Vivo M, Marcia M. Nat. Commun., 2022, 13: 725.

[24]

Guo L H, Dai S Y, Chen C L. Polymers, 201, 8: 37.

[25]

Liu H, Zhao W Z, Hao X A, Redshaw C, Huang W, Sun W H. Organometallics, 2011, 30: 2418.

[26]

Muhammad Q, Tan C, Chen C L. Sci. Bull., 2020, 65: 300.

[27]

Liao Y D, Zhang Y X, Cui L, Mu H L, Jian Z B. Organometallics, 2019, 38: 2075.

[28]

Ge Y, Li S K, Fan W G, Dai S Y. Inorg. Chem., 2021, 60: 5673.

[29]

Liu Y S, Harth E. Angew. Chem. Int. Ed., 2021, 60: 24107.

[30]

Meinhard D, Wegner M, Kipiani G, Hearley A, Reuter P, Fischer S, Marti O, Rieger B. J. Am. Chem. Soc., 2007, 129: 9182.

[31]

Dall’Anese A, Rosar V, Cusin L, Montini T, Balducci G, D’Auria I, Pellecchia C, Fornasiero P, Felluga F, Milani B. Organometallics, 2019, 38: 3498.

[32]

Lu Z, Xu X W, Luo Y, He S B, Fan W G, Dai S Y. ACS Catal., 2023, 13: 725.

[33]

Hu X Q, Kang X H, Zhang Y X, Jian Z B. CCS Chem., 2022, 4: 1680.

[34]

Xia J, Kou S Q, Zhang Y X, Jian Z B. Polymer, 2022, 240: 124478.

[35]

Hu X Q, Zhang Y X, Li B X, Jian Z B. Chem. Eur. J., 2021, 27: 11935.

[36]

Yang J S, Hu X Q, Jian Z B. Chin. J. Chem., 2022, 40: 2919.

[37]

Hu X Q, Zhang Y X, Li B X, Jian Z B. Chin. J. Chem., 2021, 39: 2829.

[38]

Camacho D H, Salo E V, Ziller J W, Guan Z B. Angew. Chem., Int. Ed., 2004, 43: 1821.

[39]

Popeney C S, Camacho D H, Guan Z B. J. Am. Chem. Soc., 2007, 129: 10062.

[40]

Popeney C S, Levins C M, Guan Z B. Organometallics, 2011, 30: 2432.

[41]

Camacho D H, Salo E V, Guan Z B, Ziller J W. Organometallics, 2005, 24: 4933.

[42]

Takano S, Takeuchi D, Osakada K, Akamatsu N, Shishido A. Angew. Chem., Int. Ed., 2014, 53: 9246.

[43]

Wang R K, Sui X L, Pang W M, Chen C L. ChemCatChem, 201, 8: 434.

[44]

Na Y N, Wang X B, Lian K B, Zhu Y, Li W M, Luo Y, Chen C L. ChemCatChem, 2017, 9: 1062.

[45]

Leung D H, Ziller J W, Guan Z B. J. Am. Chem. Soc., 2008, 130: 7538.

[46]

Miyamura Y, Kinbara K, Yamamoto Y, Praveen V K, Kato K, Takata M, Takano A, Matsushita Y, Lee E J, Lee MS, Aida T. J. Am. Chem. Soc., 2010, 132: 3292.

[47]

Schiebel E, Voccia M, Falivene L, Göttker-Schnetmann I, Caporaso L, Mecking S. Angew. Chem. Int. Ed., 2021, 60: 18472.

[48]

Takeuchi D, Chiba Y, Takano S, Osakada K. Angew. Chem., Int. Ed., 2013, 52: 12536.

[49]

Chen Z T, Zhao X X, Gong X Y, Xu D, Ma Y G. Macromolecules, 2017, 50: 6561.

[50]

Zhao X X, Chen Z T, Li H, Ma Y G. Macromolecules, 2020, 53: 3806.

[51]

Mu H L, Zhou G L, Hu X Q, Jian Z B. Coord. Chem. Rev., 2021, 435: 213802.

[52]

Mu H L, Pan L, Song D P, Li Y S. Chem. Rev., 2015, 115: 12091.

[53]

Delferro M, Marks T J. Chem. Rev., 2011, 111: 2450.

[54]

Suo H Y, Solan G A, Ma Y P, Sun W H. Coord. Chem. Rev., 2018, 372: 101.

[55]

Wada T, Muckerman J T, Fujita E, Tanaka K. Dalton Trans., 2011, 40: 2225.

[56]

Gates D P, Svejda S A, Oñate E, Killian C M, Johnson L K, White P S, Brookhart M. Macromolecules, 2000, 33: 2320.

[57]

Zou C, Dai S Y, Chen C L. Macromolecules, 2017, 51: 49.

[58]

Zou C, Wang Q, Si G F, Chen C L. Nat. Commun., 2023, 14: 1442.

AI Summary AI Mindmap
PDF

169

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/