Improving PSCs’ Short-circuit Current by Adding NaErF4:0.5%Tm@NaLuF4 Up-conversion Nanoparticles Insertion Layer

Deye Liu , Yang Lu , Xu Li , Fengmin Liu , Xiaomin Liu , Geyu Lu

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (6) : 1070 -1076.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (6) : 1070 -1076. DOI: 10.1007/s40242-023-3146-6
Article

Improving PSCs’ Short-circuit Current by Adding NaErF4:0.5%Tm@NaLuF4 Up-conversion Nanoparticles Insertion Layer

Author information +
History +
PDF

Abstract

In this study, we synthesized a core-shell structure of up-conversion nanoparticles (UCNPs) and deposited it on the surface of fluorine-doped tin oxide (FTO). Subsequently, we assembled a series of perovskite solar cells with FTO/UCNPs/c-TiO2/mp-TiO2/MAPbI3/Spiro-OMeTAD/Au structures with an effective area of 0.04 cm2. To optimize the devices, we adjusted the concentration of UCNPs precursor. The optimized device showed a power conversion efficiency (PCE) of 16.73% and a short-circuit current density (J sc) of 26.94 mA/cm2 at AM 1.5. These values are 9.20% and 10.47% higher than those of the best performing control device (15.32% for PCE and 24.12 mA/cm2 for J sc), respectively. Furthermore, we characterized the perovskite layer, charge transport layer, and perovskite solar cells using various analytical methods. The results showed that the addition of UCNPs not only improved the charge extraction and transfer, but also enhanced the stability of electron transport layer devices. In conclusion, our findings offer a process for optimizing perovskite cells using UCNPs and preliminarily analyzing their principles.

Keywords

Solar cell / Perovskite / Upconversion

Cite this article

Download citation ▾
Deye Liu, Yang Lu, Xu Li, Fengmin Liu, Xiaomin Liu, Geyu Lu. Improving PSCs’ Short-circuit Current by Adding NaErF4:0.5%Tm@NaLuF4 Up-conversion Nanoparticles Insertion Layer. Chemical Research in Chinese Universities, 2023, 39(6): 1070-1076 DOI:10.1007/s40242-023-3146-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang Y, Liu Y, Liu S. Advanced Functional Materials, 2022, 33(9): 2210335.

[2]

Cheng M, Zuo C, Wu Y, Li Z, Xu B, Hua Y, Ding L. Science Bulletin, 2020, 65(15): 12371.

[3]

Deng K, Chen Q, Li L. Advanced Functional Materials, 2020, 30(46): 2004209.

[4]

Zhang Z, Qiao L, Meng K, Long R, Chen G, Gao P. Chemical Society Reviews, 2023, 52(1): 163.

[5]

Deng K, Li L. Small Methods, 2019, 4(6): 1900150.

[6]

Li B, Fu L, Li S, Li H, Pan L, Wang L, Chang B, Yin L. Journal of Materials Chemistry A, 2019, 7(36): 20494.

[7]

Murugadoss G, Thangamuthu R. Solar Energy, 2019, 179(2019): 151.

[8]

Zheng K, Liu C, Yu K, Meng Y, Yin X, Bu S, Lin S, Liu C, Ge Z. ACS Applied Materials Interfaces, 2023, 15(11): 14748.

[9]

Li Y, Han L, Liu H, Sun K, Luo D, Guo X, Yu D, Ren T. ACS Applied Electronic Materials, 2022, 4(2): 547.

[10]

Chen Z, Xue H, Brocks G, Bobbert P A, Tao S. ACS Energy Letters, 2023, 8(2): 943.

[11]

Qiu L, Si G, Bao X, Liu J, Guan M, Wu Y, Qi X, Xing G, Dai Z, Bao Q, Li G. Chemical Society Reviews, 2023, 52(1): 212.

[12]

Suarez B, Gonzalez-Pedro V, Ripolles T S, Sanchez R S, Otero L, Mora-Sero I. The Journal of Physical Chemistry Letters, 2014, 5(10): 1628.

[13]

Wang M, Wang W, Ma B, Shen W, Liu L, Cao K, Chen S, Huang W. Nano-Micro Letters, 2021, 13(1): 62.

[14]

Xie F, Chen C, Wu Y, Li X, Cai M, Liu X, Yang X, Han L. Energy & Environmental Science, 2017, 10(9): 1942.

[15]

Liu X, Ding B, Han M, Yang Z, Chen J, Shi P, Xue X, Ghadari R, Zhang X, Wang R, Brooks K, Tao L, Kinge S, Dai S, Sheng J, Dyson P J, Nazeeruddin M K, Ding Y. Angewandte Chemie International Edition, 2023, 62(29): e202304350.

[16]

Zhou Y, Zhang X, Han M, Wu N, Chen J, Rahim G, Wu Y, Dai S, Liu X. Solar Energy Materials and Solar Cells, 2023, 257: 112375.

[17]

Tzoganakis N, Feng B, Loizos M, Chatzimanolis K, Krassas M, Tsikritzis D, Zhuang X, Kymakis E. Energy Technology, 2022, 112: 2201017.

[18]

Park S Y, Zhu K. Advanced Materials, 2022, 34(27): 2110438.

[19]

Xiong L, Guo Y, Wen J, Liu H, Yang G, Qin P, Fang G. Advanced Functional Materials, 2018, 28(35): 1802757.

[20]

Wang S, Wang A, Deng X, Xie L, Xiao A, Li C, Xiang Y, Li T, Ding L, Hao F. Journal of Materials Chemistry A, 2020, 8(25): 12201.

[21]

Lu H, Li T, Ma S, Xue X, Wen Q, Feng Y, Zhang X, Zhang L, Wu Z, Wang K, Liu S F. Small Methods, 2022, 6(12): 2201117.

[22]

Ma Y, Zhang S, Yi Y, Zhang L, Hu R, Liu W, Du M, Chu L, Zhang J, Li X, Xia R, Huang W. Journal of Materials Chemistry C, 2022, 10(15): 5922.

[23]

Liu Z, Yang Z, Yang W, Sheng J, Zeng Y, Ye J. Solar Energy, 2022, 236: 100.

[24]

Tockhorn P, Sutter J, Cruz A, Wagner P, Jäger K, Yoo D, Lang F, Grischek M, Li B, Li J, Shargaieva O, Unger E, Al-Ashouri A, Köhnen E, Stolterfoht M, Neher D, Schlatmann R, Rech B, Stannowski B, Albrecht S, Becker C. Nature Nanotechnology, 2022, 17(11): 1214.

[25]

Lei Y, Mao L, Zhu H, Yao J. Journal of Applied Polymer Science, 2021, 138(42): 51251.

[26]

Jin J, Cao Q, Zhao L, Zhou Y, Li Z, Gui L, Chen Z, Wu C, Wang S, Chi B. Materials Today Communications, 2022, 33: 104513.

[27]

Hong Y-K, Kim H, Lee G, Kim W, Park J-I, Cheon J, Koo J-Y. Applied Physics Letters, 2002, 80(5): 844.

[28]

Li X, Yang J, Jiang Q, Chu W, Zhang D, Zhou Z, Xin J. ACS Applied Materials & Interfaces, 2017, 9(47): 41354.

[29]

Ouedraogo N A N, Yan H, Han C B, Zhang Y. Small, 2021, 17(8): 2004081.

[30]

Wang X, Rakstys K, Jack K, Jin H, Lai J, Li H, Ranasinghe C S K, Saghaei J, Zhang G, Burn P L, Gentle I R, Shaw P E. Nature Communications, 2021, 12(1): 52.

[31]

Liu D, Liu K, Liu Y, Bai J, Dai M, Liu F, Lu G. Solar Energy, 2020, 212: 275.

[32]

Kakavelakis G, Petridis K, Kymakis E. J. Mater. Chem. A., 2017, 5(41): 21604.

[33]

Ma D, Shen Y, Su T, Zhao J, Rahman N U, Xie Z, Shi F, Zheng S, Zhang Y, Chi Z. Materials Chemistry Frontiers, 2019, 3(10): 2058.

[34]

Bi W, Wu Y, Chen C, Zhou D, Song Z, Li D, Chen G, Dai Q, Zhu Y, Song H. ACS Applied Materials & Interfaces, 2020, 12(22): 24737.

[35]

Singh R, Madirov E, Busko D, Hossain I M, Konyushkin V A, Nakladov A N, Kuznetsov S V, Farooq A, Gharibzadeh S, Paetzold U W, Richards B S, Turshatov A. ACS Applied Materials & Interfaces, 2021, 13(46): 54874.

[36]

Yu B H, Cheng Y, Li M, Tsang S-W, So F. ACS Applied Materials & Interfaces, 2018, 10(18): 15920.

[37]

Chen C, Zheng S, Song H. Chemical Society Reviews, 2021, 50(12): 7250.

[38]

Abdulmalek N M, Jawad H A. Optik, 2023, 280: 170808.

[39]

Manzoor S, Yu Z J, Ali A, Ali W, Bush K A, Palmstrom A F, Bent S F, McGehee M D, Holman Z C. Solar Energy Materials and Solar Cells, 2017, 173: 59.

[40]

Kim M-S, Kim B-G, Kim J. ACS Applied Materials & Interfaces, 2009, 1(6): 1264.

[41]

Qi B, Wang J. Physical Chemistry Chemical Physics, 2013, 15(23): 8972.

[42]

Dash D P, Roshan R, Mahata S, Mallik S, Mahato S S, Sarkar S K. Journal of Renewable and Sustainable Energy, 2015, 7(1): 013127.

[43]

Wu G, Cai M, Cao Y, Li Z, Zhang Z, Yang W, Chen X, Ren D, Mo Y, Yang M, Liu X, Dai S. Journal of Energy Chemistry, 2022, 65: 55.

[44]

Patil J V, Mali S S, Hong C K. Materials Today Chemistry, 2022, 26: 101118.

[45]

Cheng Y, Wei Q, Ye Z, Zhang X, Ji P, Wang N, Zan L, Fu F, Liu S. Solar RRL, 2022, 6(9): 2200418.

[46]

Kim H D, Ohkita H, Benten H, Ito S. Advanced Materials, 2015, 28(5): 917.

[47]

Park Y, Lee J-S. ACS Applied Materials & Interfaces, 2022, 14(3): 4371.

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/