Oxygen/Sulfur Atom Exchange Copolymerization of Carbon Disulfide and Propylene Oxide by a Highly Effective Heterogeneous Berlin Green Catalyst

Munir Ullah Khan , Safir Ullah Khan , Xiaohan Cao , Muhammad Usman , Muhammad Naeem Shah , Abdul Ghaffar , Muhammad Hassan , Chengjian Zhang , Xinghong Zhang

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (5) : 790 -796.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (5) : 790 -796. DOI: 10.1007/s40242-023-3144-8
Article

Oxygen/Sulfur Atom Exchange Copolymerization of Carbon Disulfide and Propylene Oxide by a Highly Effective Heterogeneous Berlin Green Catalyst

Author information +
History +
PDF

Abstract

In this study, we report that Berlin Green (FeFe-BG) framework exhibits superior performance in the catalytic coupling of carbon disulfide (CS2) and propylene oxide (PO) to generate a random copolymer containing thioether, propylene monothiocarbonate and ether units. Oxygen and sulfur atom exchange was detected in polymeric and cyclic thiocarbonate byproducts and utilized to modulate the copolymerization of CS2 and propylene oxide. The coupling of PO and CS2 was selective for copolymer formation under various reaction conditions. 1H and 13C NMR spectroscopy determined two distinct polymer linkages and two cyclic byproducts. Copolymer number average molecular weights ranged from 6.4 kg/mol to 10.5 kg/mol, with a comparatively low polydispersity of 1.3–1.7. The CS2/PO molar feed ratio had a significant impact on the O/S exchange process; the ratio of cyclic thiocarbonate byproducts could be efficiently regulated by tuning the CS2 molar feed ratio.

Keywords

Carbon disulfide / Copolymerization / Prussian Blue analogue / Heterogeneous catalysis / Berlin Green

Cite this article

Download citation ▾
Munir Ullah Khan, Safir Ullah Khan, Xiaohan Cao, Muhammad Usman, Muhammad Naeem Shah, Abdul Ghaffar, Muhammad Hassan, Chengjian Zhang, Xinghong Zhang. Oxygen/Sulfur Atom Exchange Copolymerization of Carbon Disulfide and Propylene Oxide by a Highly Effective Heterogeneous Berlin Green Catalyst. Chemical Research in Chinese Universities, 2023, 39(5): 790-796 DOI:10.1007/s40242-023-3144-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang J, He Y S, Yang J. Adv. Mater., 2015, 27(3): 569.

[2]

He L, Zhao H, Theato P. Angew. Chem. Int. Ed., 2018, 57(40): 13012.

[3]

Kloxin C J, Scott T F, Park H Y, Bowman C N. Adv. Mater., 2011, 23(17): 1977.

[4]

Bruce P G, Freunberger S A, Hardwick L J, Tarascon J-M. Nat. Mater., 2012, 11(1): 19.

[5]

Luo M, Zhang X H, Du B Y, Wang Q, Fan Z Q. Polym. Chem., 2015, 6(27): 4978.

[6]

Zhang X H, Theato P. Sulfur-containing Polymers: from Synthesis to Functional Materials, 2021, Weinheim: John Wiley & Sons

[7]

Luo M, Zhang X H, Darensbourg D J. Acc. Chem. Res., 201, 49(10): 2209.

[8]

Ochiai B, Yoshii K, Nagai D, Endo T. J. Polym. Sci. Pol. Chem., 2005, 43(5): 1014.

[9]

Nakano K, Tatsumi G, Nozaki K. J. Am. Chem. Soc., 2007, 129(49): 15116.

[10]

Zhang X H, Liu F, Sun X K, Chen S, Du B Y, Qi G R, Wan K M. Macromolecules, 2008, 41(5): 1587.

[11]

Luo M, Zhang X H, Darensbourg D J. Macromolecules, 2015, 48(16): 5526.

[12]

Luo M, Zhang X H, Du B Y, Wang Q, Fan Z Q. Macromolecules, 2013, 46(15): 5899.

[13]

Cao X H, Wang H L, Yang J L, Wang R Y, Hong X, Zhang X H, Xu J T, Wang H. Chin. Chem. Lett., 2022, 33(2): 1021.

[14]

Sarapas J M, Tew G N. Angew. Chem. Int. Ed., 201, 55(51): 15860.

[15]

Tian T, Hu R, Tang B Z. J. Am. Chem. Soc., 2018, 140(19): 6156.

[16]

Yuan J, Xiong W, Zhou X, Zhang Y, Shi D, Li Z, Lu H. J. Am. Chem. Soc., 2019, 141(12): 4928.

[17]

Smith R A, Fu G, McAteer O, Xu M, Gutekunst W R. J. Am. Chem. Soc., 2019, 141(4): 1446.

[18]

Xia Y, Zhang X, Yang S. Angew. Chem. Int. Ed., 2018, 57(20): 5665.

[19]

Zhang C J, Zhang X H. Macromolecules, 2020, 53(1): 233.

[20]

Jiang X F, Huang H, Chai Y F, Lohr T L, Yu S Y, Lai W, Pan Y J, Delferro M, Marks T J. Nat. Chem., 2017, 9(2): 188.

[21]

DeMartino A W, Zigler D F, Fukuto J M, Ford P C. Chem. Soc. Rev., 2017, 46(1): 21.

[22]

Sze N D, Ko M K W. Nature, 1979, 280(5720): 308.

[23]

Sze N D, K W Ko M. Nature, 1979, 278(5706): 731.

[24]

Yang J L, Hu L F, Cao X H, Wang Y, Zhang X H. Chin. J. Chem., 2020, 38(3): 269.

[25]

Darensbourg D. J., Andreatta J. R., Jungman M. J., Reibenspies J. H., Dalton Trans., 2009, (41), 8891

[26]

Darensbourg D J, Wilson S J, Yeung A D. Macromolecules, 2013, 46(20): 8102.

[27]

Diebler J, Komber H, Haussler L, Lederer A, Werner T. Macromolecules, 201, 49(13): 4723.

[28]

Simonov A, De Baerdemaeker T, Bostrom H L B, Rios Gomez M L, Gray H J, Chernyshov D, Bosak A, Burgi H B, Goodwin A L. Nature, 2020, 578(7794): 256.

[29]

Margadonna S, Prassides K, Fitch A N. Angew. Chem. Int. Ed., 2004, 43(46): 6316.

[30]

Qian J F, Wu C, Cao Y L, Ma Z F, Huang Y H, Ai X P, Yang H X. Adv. Energy Mater., 2018, 8(17): 1702619.

[31]

Lu Y, Wang L, Cheng J, Goodenough J B. Chem. Commun., 2012, 48(52): 6544.

[32]

Hu L, Zhang P, Chen Q W, Mei J Y, Yan N. RSC Adv., 2011, 1(8): 1574.

[33]

Kaye S S, Long J R. J. Am. Chem. Soc., 2005, 127(18): 6506.

[34]

Yi H, Qin R, Ding S, Wang Y, Li S, Zhao Q, Pan F. Adv. Funct. Mater., 2021, 31(6): 2006970.

[35]

Deng L, Yang Z, Tan L, Zeng L, Zhu Y, Guo L. Adv. Mater., 2018, 30(31): 1802510.

[36]

Tang P Y, Han L J, Hegner F S, Paciok P, Biset-Peiro M, Du H C, Wei X K, Jin L, Xie H B, Shi Q, Andreu T, Lira-Cantu M, Heggen M, Dunin-Borkowski R E, Lopez N, Galan-Mascaros J R, Morante J R, Arbiol J. Adv. Energy Mater., 2019, 9(34): 1901836.

[37]

Yan L, Liu Y, Zha K, Li H, Shi L, Zhang D. ACS Appl. Mater. Interfaces, 2017, 9(3): 2581.

[38]

Khan M U, Khan S U, Kiriatnikom J, Zareen S, Zhang X H. Polyhedron, 2022, 214: 115640.

[39]

Wei R J, Zhang X H, Du B Y, Fan Z Q, Qi G R. J. Mol. Catal. A Chem., 2013, 379: 38.

[40]

Zhang X H, Chen S, Wu X M, Sun X K, Liu F, Qi G R. Chin. Chem. Lett., 2007, 18(7): 887.

[41]

Khan M U, Khan S U, Kiriratnikom J, Zareen S, Zhang X H. Chin. Chem. Lett., 2022, 33(2): 1081.

[42]

Khan M U, Khan S U, Cao X, Usman M, Yue X, Ghaffar A, Hassan M, Zhang C, Zhang X H. Chem. Asian J., 2023, 18(1): e202201050.

[43]

Wu H L, Yang J L, Luo M, Wang R Y, Xu J T, Du B Y, Zhang X H, Darensbourg D J. Macromolecules, 201, 49(23): 8863.

[44]

Yue T J, Ren W M, Liu Y, Wan Z Q, Lu X B. Macromolecules, 201, 49(8): 2971.

[45]

Luo M, Zhang X H, Darensbourg D J. Polym. Chem., 2015, 6(39): 6955.

[46]

Zhang C J, Wu H L, Li Y, Yang J L, Zhang X H. Nat. Commun., 2018, 9(1): 2137.

[47]

Yang J L, Wu H L, Li Y, Zhang X H, Darensbourg D J. Angew. Chem. Int. Ed., 2017, 56(21): 5774.

[48]

Ren W M, Yue T J, Li M R, Wan Z Q, Lu X B. Macromolecules, 2017, 50(1): 63.

[49]

Yue T J, Ren W M, Chen L, Gu G G, Liu Y, Lu X B. Angew. Chem. Int. Ed., 2018, 57(39): 12670.

[50]

Yue T J, Bhat G A, Zhang W J, Ren W M, Lu X B, Darensbourg D J. Angew. Chem. Int. Ed., 2020, 59(32): 13633.

[51]

Zhang C J, Zhang X H. Chin. J. Polym. Sci., 2019, 37(10): 951.

[52]

Wu X Y, Xu Y K, Jiang H, Wei Z X, Hong J J, Hernandez A S, Du F, Ji X L. Acs. Appl. Energ. Mater., 2018, 1(7): 3077.

[53]

Kulesza P J, Malik M A, Denca A, Strojek J. Anal. Chem., 199, 68(14): 2442.

[54]

Shen L, Wang Z, Chen L. Chem. Eur. J., 2014, 20(39): 12559.

[55]

Panov G I, Starokon E V, Pirutko L V, Paukshtis E A, Parmon V N. J. Catal., 2008, 254(1): 110.

[56]

Hadjiivanov K. Adv. Catal., 2014, 57: 99.

AI Summary AI Mindmap
PDF

168

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/