Promoting Effect of ZnO on the Catalytic Performance of CoZSM-5 for CO2-Assisted Dehydrogenation of Ethane

Huan He , Zhengxi Zou , Weiming Hua , Yinghong Yue , Zi Gao

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (6) : 1064 -1069.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (6) : 1064 -1069. DOI: 10.1007/s40242-023-3131-0
Article

Promoting Effect of ZnO on the Catalytic Performance of CoZSM-5 for CO2-Assisted Dehydrogenation of Ethane

Author information +
History +
PDF

Abstract

A series of ZnO-modified cobaltous ion exchanged ZSM-5 catalysts is prepared using incipient wetness impregnation and characterized by X-ray diffraction (XRD), N2 adsorption, transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (DR UV-Vis), X-ray photoelectron spectroscopy (XPS), pyridine-adsorbed Fourier transform infrared (Py-IR) and Raman. Their catalytic performance towards CO2-assisted dehydrogenation of ethane to ethylene has been evaluated. The addition of ZnO onto CoZSM-5 obviously improved the yield of ethylene as well as the conversion of CO2. The promoting effect is attributed to the good activity of ZnO for the reverse water gas shift (RWGS) reaction, which enhances the coupling between RWGS and ethane dehydrogenation.

Keywords

Ethane dehydrogenation / CO2 utilization / ZnO / CoZSM-5 / Coupling

Cite this article

Download citation ▾
Huan He, Zhengxi Zou, Weiming Hua, Yinghong Yue, Zi Gao. Promoting Effect of ZnO on the Catalytic Performance of CoZSM-5 for CO2-Assisted Dehydrogenation of Ethane. Chemical Research in Chinese Universities, 2023, 39(6): 1064-1069 DOI:10.1007/s40242-023-3131-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sholl D S, Lively R P. Nature, 201, 532: 435.

[2]

Sadrameli S M. Fuel, 2015, 140: 102.

[3]

Najari S, Saeidi S, Concepcion P, Dionysiou D D, Bhargava S K, Lee A F, Wilson K. Chem. Soc. Rev., 2021, 50: 4564.

[4]

Fairuzov D, Gerzeliev I, Maximov A, Naranov E. Catalysts, 2021, 11: 833.

[5]

Koirala R, Buechel R, Pratsinis S E, Baiker A. Appl. Catal. A: Gen., 201, 527: 96.

[6]

Koirala R, Safonova O V, Pratsinis S E, Baiker A. Appl. Catal. A: Gen., 2018, 552: 77.

[7]

Huang R, Cheng Y, Ji Y, Gorte R J. Nanomaterials, 2020, 10: 244.

[8]

Guo H, He H, Miao C, Hua W, Yue Y, Gao Z. Mol. Catal., 2022, 519: 112155.

[9]

Guo H, He H, Miao C, Hua W, Yue Y, Gao Z. Appl. Catal. A: Gen., 2022, 635: 118569.

[10]

Ren Y, Zhang F, Hua W, Yue Y, Gao Z. Catal. Today, 2009, 148: 316.

[11]

Luo Y, Miao C, Yue Y, Hua W, Gao Z. Micropor. Mesopor. Mat., 2020, 294: 109864.

[12]

Fan H, Nie X, Wang H, Janik M J, Song C, Guo X. Catal. Sci. Technol., 2020, 10: 8359.

[13]

Liu J, He N, Zhang Z, Yang J, Jiang X, Zhang Z, Su J, Shu M, Si R, Xiong G, Xie H B, Vilé G. ACS Catal., 2021, 11: 2819.

[14]

Niu X, Gao J, Miao Q, Dong M, Wang G, Fan W, Qin Z, Wang J. Micropor. Mesopor. Mat., 2014, 197: 252.

[15]

Wang L, Sang S, Meng S, Zhang Y, Qi Y, Liu Z. Mater. Lett., 2007, 61: 1675.

[16]

Hu B, Kim W G, Sulmonetti T P, Sarazen M L, Tan S, So J, Liu Y, Dixit R S, Nair S, Jones C W. ChemCatChem, 2017, 9: 3330.

[17]

Mehdad A, Lobo R F. Catal. Sci. Technol., 2017, 7: 3562.

[18]

Chen C, Hu Z P, Ren J T, Zhang S, Wang Z, Yuan Z Y. Mol. Catal., 2019, 476: 110508.

[19]

Liu J, Zhang Z, Jiang Y, Jiang X, He N, Yan S, Guo P, Xiong G, Su J, Vilé G. Appl. Catal. B: Environ., 2022, 304: 120947.

[20]

Chen C, Hu Z, Ren J, Zhang S, Wang Z, Yuan Z-Y. CheCatChem, 2019, 11: 868.

[21]

Gabrienko A A, Arzumanov S S, Toktarev A V, Danilova I G, Prosvirin I P, Kriventsov V V, Zaikovskii V I, Freude D, Stpanov A G. ACS Catal., 2017, 7: 1818.

[22]

Gong T, Qin L, Lu J, Feng H. Physical Chemistry Chemical Physics, 201, 18: 601.

[23]

Dai Y, Gu J, Tian S, Wu Y, Chen J, Li F, Du Y, Peng L, Ding W, Yang Y. J. Catal., 2020, 381: 482.

[24]

Mo S, Li S, Li J, Deng Y, Peng S, Chen J, Chen Y. Nanoscale, 201, 8: 15763.

[25]

Oseke G G, Peter E E, Atta A Y, Mukhtar B, El-Yakubu B J, Aderemi B O. J. Porous Mat., 2023, 30: 999.

[26]

Rodaum C, Chaipornchalerm P, Nunthakitgoson W, Thivasasith A, Maihom T, Atithep T, Kidkhunthod P, Uthayopas C, Nutanong S, Thongratkaew S, Faungnawakij K, Wattanakit C. Fuel, 2022, 325: 124833.

[27]

Xie Q, Miao C, Lei T, Hua W, Yue Y, Gao Z. React. Kinet. Mech. Catal., 2020, 132: 417.

[28]

Schweitzer N M, Hu B, Das U, Kim H, Greeley J, Curtiss L A, Stair P C, Miller J T, Hock A S. ACS Catal., 2014, 4: 1091.

AI Summary AI Mindmap
PDF

151

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/