Efficient Construction of a Polyaniline-coated DNA Nanoparticle for Photothermal Therapy

Raja Muhammad Aqib , Changping Yang , Xiaohui Wu , Yuang Wang , Jing Fan , Yingxu Shang , Jianbing Liu , Baoquan Ding

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (6) : 884 -890.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (6) : 884 -890. DOI: 10.1007/s40242-023-3122-1
Article

Efficient Construction of a Polyaniline-coated DNA Nanoparticle for Photothermal Therapy

Author information +
History +
PDF

Abstract

Photothermal therapy is a direct and non-invasive therapeutic strategy. Herein, we report a general strategy for the construction of polyaniline-coated DNA nanoparticles for efficient photothermal therapy. In our design, two G4/hemin-based DNAzymes are precisely organized in a DNA template to mimic the function of horseradish peroxidase (HRP) for the catalytic oxidation of aniline. After polymerization, the polyaniline-coated DNA nanoparticles (PANI/DNA NPs) can be efficiently obtained as the photothermal agent to elicit a pronounced photothermal effect. After cellular uptake, the noticeable photothermal effect from 808 nm laser irradiation can achieve an efficient proliferation inhibition of tumor cells. This rationally developed photothermal agent based on DNA template-assisted polymerization presents a new avenue for the development of photothermal therapy.

Keywords

Nucleic acid nanostructure / Self-assembly / Polymerization / Polyaniline / Photothermal therapy

Cite this article

Download citation ▾
Raja Muhammad Aqib, Changping Yang, Xiaohui Wu, Yuang Wang, Jing Fan, Yingxu Shang, Jianbing Liu, Baoquan Ding. Efficient Construction of a Polyaniline-coated DNA Nanoparticle for Photothermal Therapy. Chemical Research in Chinese Universities, 2023, 39(6): 884-890 DOI:10.1007/s40242-023-3122-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Weinberg S E, Chandel N S. Nat. Chem. Biol., 2015, 11: 9.

[2]

Binnewies M, Roberts E W, Kersten K, Chan V, Fearon D F, Merad M, Coussens L M, Gabrilovich D I, Ostrand-Rosenberg S, Hedrick C C, Vonderheide R H, Pittet M J, Jain R K, Zou W, Howcroft T K, Woodhouse E C, Weinberg R A, Krummel M F. Nat. Med., 2018, 24: 541.

[3]

Milone M C, Xu J, Chen S-J, Collins M A, Zhou J, Powell D J, Melenhorst J J. Nat. Cancer, 2021, 2: 780.

[4]

Zinn S, Vazquez-Lombardi R, Zimmermann C, Sapra P, Jermutus L, Christ D. Nat. Cancer, 2023, 4: 165.

[5]

Cheng L, Wang C, Feng L, Yang K, Liu Z. Chem. Rev., 2014, 114: 10869.

[6]

Yang X, Yang M, Pang B, Vara M, Xia Y. Chem. Rev., 2015, 115: 10410.

[7]

Liu Y, Bhattarai P, Dai Z, Chen X. Chem. Soc. Rev., 2019, 48: 2053.

[8]

Zhi D, Yang T, O’Hagan J, Zhang S, Donnelly R F. J. Control. Release, 2020, 325: 52.

[9]

Wang H, Xue K-F, Yang Y, Hu H, Xu J-F, Zhang X. J. Am. Chem. Soc., 2022, 144: 2360.

[10]

Kang H, Trondoli A C, Zhu G, Chen Y, Chang Y-J, Liu H, Huang Y-F, Zhang X, Tan W. ACS Nano, 2011, 5: 5094.

[11]

Tian Q, Jiang F, Zou R, Liu Q, Chen Z, Zhu M, Yang S, Wang J, Wang J, Hu J. ACS Nano, 2011, 5: 9761.

[12]

Xia Y, Li W, Cobley C M, Chen J, Xia X, Zhang Q, Yang M, Cho E C, Brown P K. Acc. Chem. Res., 2011, 44: 914.

[13]

Dykman L, Khlebtsov N. Chem. Soc. Rev., 2012, 41: 2256.

[14]

Chen J, Gong M, Fan Y, Feng J, Han L, Xin H L, Cao M, Zhang Q, Zhang D, Lei D, Yin Y. ACS Nano, 2022, 16: 910.

[15]

Lim E K, Kim T, Paik S, Haam S, Huh Y M, Lee K. Chem. Rev., 2015, 115: 327.

[16]

Li D, Huang J, Kaner R B. Acc. Chem. Res., 2009, 42: 135.

[17]

Yang J, Choi J, Bang D, Kim E, Lim E-K, Park H, Suh J-S, Lee K, Yoo K-H, Kim E-K, Huh Y-M, Haam S. Angew. Chem. Int. Ed., 2011, 50: 441.

[18]

Zhou J, Lu Z, Zhu X, Wang X, Liao Y, Ma Z, Li F. Biomaterials, 2013, 34: 9584.

[19]

Liu W, Kumar J, Tripathy S, Senecal K J, Samuelson L. J. Am. Chem. Soc., 1999, 121: 71.

[20]

Li W, McCarthy P A, Liu D, Huang J, Yang S-C, Wang H-L. Macromolecules, 2002, 35: 9975.

[21]

Wang W, Lu X, Li Z, Lei J, Liu X, Wang Z, Zhang H, Wang C. Adv. Mater., 2011, 23: 5109.

[22]

Datta B, Schuster G B. J. Am. Chem. Soc., 2008, 130: 2965.

[23]

Xie S, Chai Y, Yuan Y, Yuan R. Chem. Commun., 2014, 50: 7169.

[24]

Nagarajan R, Liu W, Kumar J, Tripathy S K, Bruno F F, Samuelson L A. Macromolecules, 2001, 34: 3921.

[25]

Ma Y, Zhang J, Zhang G, He H. J. Am. Chem. Soc., 2004, 126: 7097.

[26]

Kallenbach N R, Ma R-I, Seeman N C. Nature, 1983, 305: 829.

[27]

Li Y, Tseng Y D, Kwon S Y, d’Espaux L, Bunch J S, McEuen P L, Luo D. Nat. Mater., 2004, 3: 38.

[28]

Goodman R P, Schaap I A, Tardin C F, Erben C M, Berry R M, Schmidt C F, Turberfield A J. Science, 2005, 310: 1661.

[29]

Rothemund P W K. Nature, 200, 440: 297.

[30]

He Y, Ye T, Su M, Zhang C, Ribbe A E, Jiang W, Mao C. Nature, 2008, 452: 198.

[31]

Andersen E S, Dong M, Nielsen M M, Jahn K, Subramani R, Mamdouh W, Golas M M, Sander B, Stark H, Oliveira C L P, Pedersen J S, Birkedal V, Besenbacher F, Gothelf K V, Kjems J. Nature, 2009, 459: 73.

[32]

Dietz H, Douglas S M, Shih W M. Science, 2009, 325: 725.

[33]

Douglas S M, Dietz H, Liedl T, Högberg B, Graf F, Shih W M. Nature, 2009, 459: 414.

[34]

Han D, Pal S, Nangreave J, Deng Z, Liu Y, Yan H. Science, 2011, 332: 342.

[35]

Ke Y, Ong L L, Shih W M, Yin P. Science, 2012, 338: 1177.

[36]

Jones M R, Seeman N C, Mirkin C A. Science, 2015, 347: 1260901.

[37]

Seeman N C, Sleiman H F. Nat. Rev. Mater., 2017, 3: 17068.

[38]

Wang X, Chandrasekaran A R, Shen Z, Ohayon Y P, Wang T, Kizer M E, Sha R, Mao C, Yan H, Zhang X, Liao S, Ding B, Chakraborty B, Jonoska N, Niu D, Gu H, Chao J, Gao X, Li Y, Ciengshin T, Seeman N C. Chem. Rev., 2019, 119: 6273.

[39]

Wang Z-G, Zhan P, Ding B. ACS Nano, 2013, 7: 1591.

[40]

Wang Z G, Liu Q, Ding B Q. Chem. Mater., 2014, 26: 3364.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/