Supramolecular Self-assembly Formed from Cucurbit[8]uril and p-Hydroxybenzoic Acid

Chenghui Wang , Zhichao Yu , Qinghong Bai , Dingwu Pan , Timothy J. Prior , Zhu Tao , Carl Redshaw , Xin Xiao

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (6) : 1058 -1063.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (6) : 1058 -1063. DOI: 10.1007/s40242-023-3119-9
Article

Supramolecular Self-assembly Formed from Cucurbit[8]uril and p-Hydroxybenzoic Acid

Author information +
History +
PDF

Abstract

The binding behavior of cucurbit[8]uril(Q[8]) and p-hydroxybenzoic acid(p-HBA) has been investigated using 1H NMR titration experiments, UV-Vis absorption, isothermal titration calorimetry(ITC), and X-ray crystallography. Results revealed that the Q[8] can accommodate two p-HBA molecules to form a 1:2 host-guest inclusion complex in solution, namely (p-HBA)2@Q[8]. From a poorly scattering crystal, we were able to identify two symmetry unique Q[8] rings, but with different p-HBA fillings. The structure can be represented as Q[8]+1.5 p-HBA, which gives Q[8]@(p-HBA)2·Q[8]@p-HBA as the structural formula. This supramolecular structure was screened for its ability to capture iodine. The experimental results showed that the adsorption efficiency of the supramolecular organic framework material for iodine capture was 43.8%, with an equilibrium adsorption capacity of 223.3 mg/g.

Keywords

Supramolecular self-assembly / Cucurbit[8]uril / p-Hydroxybenzoic

Cite this article

Download citation ▾
Chenghui Wang, Zhichao Yu, Qinghong Bai, Dingwu Pan, Timothy J. Prior, Zhu Tao, Carl Redshaw, Xin Xiao. Supramolecular Self-assembly Formed from Cucurbit[8]uril and p-Hydroxybenzoic Acid. Chemical Research in Chinese Universities, 2023, 39(6): 1058-1063 DOI:10.1007/s40242-023-3119-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Steed J W, Atwood J L. John Wiley and Sons, 2022, 1: 261.

[2]

Lehn J M. Angew. Chem. Int. Ed., 1988, 27: 89.

[3]

Lanigan N, Wang X. Chem. Commun., 2013, 49: 8133.

[4]

Gao C, Wang Q, Li J, Kwong C H, Wei J, Xie B, Lu S, Lee S M Y, Wang R. Sci. Adv., 2022, 8: eabn1805.

[5]

Guo S, Huang Q, Chen Y, Wei J, Zheng J, Wang L, Wang Y, Wang R. Angew. Chem. Int. Ed., 2021, 60: 618.

[6]

Schalley C A. Int. J. Mass Spectrom., 2000, 194: 11.

[7]

Yang H, Yuan B, Zhang X, Scherman O A. Acc. Chem. Res., 2014, 47: 2106.

[8]

Khan S B, Lee S L. Molecules, 2021, 26: 3995.

[9]

Ji X, Wang F, Yan X, Dong S, Huang F. Chinese J. Chem., 2020, 38: 1473.

[10]

Sun C, Wang Z, Yue L, Huang Q, Cheng Q, Wang R. J. Am. Chem. Soc., 2020, 142: 16523.

[11]

Wang Z, Sun C, Yang K, Chen X, Wang R. Angew. Chem., 2022, 134: e202206763.

[12]

Lu Y., Yu Z., Yang X., Dai J., Shan P., Feng X., Tao Z., Redshaw C., Xiao X., Chin. Chem. Lett., 2022, 108040

[13]

Luo Y., Zhang W., Zhao J., Yang M. X., Ren Q., Redshaw C., Tao Z., Xiao X., Chin. Chem. Lett., 2022, 107780

[14]

Luo Y, Zhang W, Yang X N, Yang M X, Min W, Tao Z, Xiao X. Inorg. Chem., 2022, 61: 16678.

[15]

Liu M, Cen R, Li J, Li Q, Tao Z, Xiao X, Isaacs L. Angew. Chem. Int. Ed., 2022, 61: e202207209.

[16]

Zhang W, Luo Y, Zhao J, Zhang C, Ni X, Tao Z, Xiao X. Chinese Chem. Lett., 2022, 33: 2455.

[17]

Zhang X D, Zhao Y, Chen K, Dao X Y, Kang Y S, Liu Y, Sun W Y. Chem. Eur. J., 2020, 26: 2154.

[18]

Lin J X, Liang J, Feng J F, Karadeniz B, J, Cao R. Inorg. Chem. Fron., 201, 3: 1393.

[19]

Yu H J, Zhou X L, Dai X, Shen F F, Zhou Q, Zhang Y M, Xu X F, Liu Y. Chem. Sci., 2022, 13: 8187.

[20]

Feng H, Luo Y, Liu M, Chen Q, Tao Z, Xiao X. New J. Chem., 2021, 45: 22133.

[21]

Rivas F J, Beltrán F J, Frades J, Buxeda P. Water Research, 2001, 35: 387.

[22]

Soni M G, Carabin I G, Burdock G A. Food Chem. Toxicol., 2005, 43: 985.

[23]

Yang J, Hong B, Wang N, Li X, Huang X, Bao Y, Xie C, Hao H. CrystEngComm, 2019, 21: 6374.

[24]

Lever M. Biochem. Med., 1973, 7: 274.

[25]

Hayati P, Mehrabadi Z, Karimi M, Janczak J, Mohammadi K, Mahmoudi G, Dadi F, Fard M J S, Hasanzadeh A, Rostamnia S. New J. Chem., 2021, 45: 3408.

[26]

Zhao X, Shimazu M S, Chen X, Bu X, Feng P. Angew. Chem. Int. Ed., 2018, 57: 6208.

[27]

Chen K, Liang L L, Cong H, Xiao X, Zhang Y Q, Xue S F, Zhu Q J, Tao Z. CrystEngComm, 2012, 4: 3862.

[28]

Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L. Angew. Chem. Int. Ed., 2005, 44: 4844.

[29]

Sheldrick G M. Acta Crystallogr. Sect. A, 2008, 64: 112.

[30]

Spek A L. Acta Crystallogr. Sect. D, 2009, 65: 148.

[31]

Hu J H, Cen R, Liu M, Shan P H, Prior T J, Redshaw C, Huang Y, Tao Z, Xiao X. Inorg. Chem. Comm., 2022, 142: 109663.

[32]

Zhang X D, Zhao Y, Chen K, Dao X Y, Kang Y S, Liu Y, Sun W Y. Chem. Eur. J., 2020, 26: 2154.

[33]

Sager E E, Schooley M R, Carr A S, Acree S F. J. Res. Nat. Bur. Stand., 1945, 35: 521.

[34]

Chen R, Hu T, Li Y. React. Funct. Polym., 2020, 159: 104806.

[35]

Chang T C, Liu Y H, Chen M L, Tseng C C, Lin Y S, Huang S L. Molecules, 2021, 26: 3443.

[36]

Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L. Angew. Chem. Int. Ed., 2005, 44: 4844.

[37]

Sheldrick G M. Acta Crystallogr. Sect. A, 2008, 64: 112.

[38]

Spek A L. Acta Crystallogr. Sect. D, 2009, 65: 148.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/