Visible Light-driven Self-healable Mechanochromic Polyurethanes

Jinpeng Han , Yuan Yuan , Yulan Chen

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (5) : 757 -762.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (5) : 757 -762. DOI: 10.1007/s40242-023-3118-x
Article

Visible Light-driven Self-healable Mechanochromic Polyurethanes

Author information +
History +
PDF

Abstract

Polyurethanes incorporating spiropyran(SP) and diselenide (DiSe) in the main chain, which are confined in different hard segments are developed. Visible light-driven diselenide metathesis and mechanically induced ring opening of SP offer self-healing and mechanochromic properties of the polymers, respectively. Delicate selection of the polymer backbone is found essential to promote the dual functions. In particular for polyurethane with SP coupled into 4,4’-methylenebis(cyclohexyl isocyanate) and DiSe linked with isophorone diisocyanate, excellent mechanical, mechanochromic and self-healing properties are estimated. Moreover, combining self-healing and self-reporting moieties in one chain allows the discrimination of different healing mechanisms, including bond formation and chain entanglement, in a visualized way.

Keywords

Self-healing / Self-reporting / Polyurethane / Mechanochromic / Diselenide

Cite this article

Download citation ▾
Jinpeng Han, Yuan Yuan, Yulan Chen. Visible Light-driven Self-healable Mechanochromic Polyurethanes. Chemical Research in Chinese Universities, 2023, 39(5): 757-762 DOI:10.1007/s40242-023-3118-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wei Z, Yang J H, Liu Z Q, Xu F, Zhou J X, Zrínyi M, Osada Y, Chen Y M. Advanced Functional Materials, 2015, 25(9): 1352.

[2]

Yesilyurt V, Webber M J, Appel E A, Godwin C, Langer R, Anderson D G. Advanced Materials, 201, 28(1): 86.

[3]

Zou W, Dong J, Luo Y, Zhao Q, Xie T. Advanced Materials, 2017, 29(14): 1606100.

[4]

Hu Z, Zhang D, Lu F, Yuan W, Xu X, Zhang Q, Liu H, Shao Q, Guo Z, Huang Y. Macromolecules, 2018, 51(14): 5294.

[5]

Chen J, Liu J, Thundat T, Zeng H. ACS Applied Materials & Interfaces, 2019, 11(20): 18720.

[6]

Chen D, Wang D, Yang Y, Huang Q, Zhu S, Zheng Z. Advanced Energy Materials, 2017, 7(23): 1700890.

[7]

Zhang F, Ju P, Pan M, Zhang D, Huang Y, Li G, Li X. Corrosion Science, 2018, 144: 74.

[8]

Dmitry S, Helmuth M. Science, 2013, 341(6153): 1458.

[9]

Tan Y J, Wu J, Li H, Tee B, C, K ACS Applied Materials & Interfaces, 2018, 10(18): 15331.

[10]

Wang C, Li R, Chen P, Fu Y, Ma X, Shen T, Zhou B, Chen K, Fu J, Bao X, Yan W, Yang Y. Journal of Materials Chemistry A, 2021, 9(8): 4758.

[11]

Xing R, Liu K, Jiao T, Zhang N, Ma K, Zhang R, Zou Q, Ma G, Yan X. Advanced Materials, 201, 28(19): 3669.

[12]

Zhang Y Y, Chen F, Li Y, Qiu H Y, Zhang J J, Yin S C. Chinese Journal of Chemistry, 2021, 39(10): 2731.

[13]

Guo Y K, Li H, Zhao P X, Wang X F, Astruc D, Shuai MB. Chinese Journal of Polymer Science, 2017, 35(6): 728.

[14]

Li Z J, Zhong J, Liu M C, Rong J C, Yang K, Zhou J Y, Shen L, Gao F, He H F. Chinese Journal of Polymer Science, 2020, 38(9): 932.

[15]

Yang S, Zhao J, Chen S, Zhao J. Chemical Research in Chinese Universities, 2021, 38(4): 968.

[16]

Wang H, Xu J, Du X, Du Z, Cheng X, Wang H. Composites Part B: Engineering, 2021, 225: 109273.

[17]

Ren J, Dong X, Duan Y, Lin L, Xu X, Shi J, Jia R, Wu D, He X. Journal of Applied Polymer Science, 2022, 139(20): 52144.

[18]

Liu W, Fang C, Wang S, Huang J, Qiu X. Macromolecules, 2019, 52(17): 6474.

[19]

Jo Y H, Li S, Zuo C, Zhang Y, Gan H, Li S, Yu L, He D, Xie X, Xue Z. Macromolecules, 2020, 53(3): 1024.

[20]

Liu Z, Guo W, Wang W, Guo Z, Yao L, Xue Y, Liu Q, Zhang Q. ACS Applied Materials & Interfaces, 2022, 14(4): 6016.

[21]

Deng Y, Yuan Y, Chen Y. CCS Chemistry, 2021, 3(5): 1316.

[22]

Deng Y, Zhang Q, Feringa B L, Tian H, Qu D H. Angewandte Chemie International Edition, 2020, 132(13): 5316.

[23]

Cui X, Yan Y, Huang J, Qiu X, Zhang P, Chen Y, Hu Z, Liang X. Applied Surface Science, 2022, 579: 152186.

[24]

Wu Y, Wang Y, Wan X, Gao C, Liu Y. Progress in Organic Coatings, 2022, 164: 106705.

[25]

Song X, Song Y, Cui X, Wang J P, Luo Y, Qi T, Li G L. Polymer, 2022, 250: 124878.

[26]

Kim S M, Jeon H, Shin S H, Park S A, Jegal J, Hwang S Y, Oh D X, Park J. Advanced Materials, 2018, 30(1): 1705145.

[27]

Wang Z, Ma Z, Wang Y, Xu Z, Luo Y, Wei Y, Jia X. Advanced Materials, 2015, 27(41): 6469.

[28]

Wang T, Zhang N, Dai J, Li Z, Bai W, Bai R. ACS Applied Materials & Interfaces, 2017, 9(13): 11874.

[29]

Yan C, Yang F, Wu M, Yuan Y, Chen F, Chen Y. Macromolecules, 2019, 52(23): 9376.

[30]

Ji S, Cao W, Yu Y, Xu H. Advanced Materials, 2015, 27(47): 7740.

[31]

Gossweiler G R, Hewage G B, Soriano G, Wang Q, Welshofer G W, Zhao X, Craig S L. ACS Macro Letters, 2014, 3(3): 216.

[32]

Chen Y, Sanoja G, Creton C. Chemical Science, 2021, 12: 11098.

[33]

Kim T, Robb M, Moore J, White S, Sottos N. Macromolecules, 2018, 51(22): 9177.

[34]

Park J, Lee Y, Barbee M, Cho S, Cho S, Shanker R, Kim J, Myoung J, Kim M, Baig C, Craig S, Ko H. Advanced Materials, 2019, 31(25): 1808148.

[35]

Ji S, Fan F, Sun C, Yu Y, Xu H. ACS Applied Materials & Interfaces, 2017, 9(38): 33169.

[36]

Fan F, Liu C, Wang S, Lv J, Li W, Fu Y, Xu H. Journal of Materials Chemistry C, 2019, 7(35): 10777.

[37]

Kang X, Yuan Y, Xu H, Chen Y. Chemical Research in Chinese Universities, 2021, 38(2): 516.

[38]

Zhao P, Cao M, Liu C, Dai Y, Tan Y, Ji S, Xu H. ACS Applied Materials & Interfaces, 2022, 14(23): 27413.

[39]

Zhao P, Xia J, Liu J, Tan Y, Ji S, Xu H. ACS Applied Materials & Interfaces, 2021, 13(42): 50422.

[40]

Chen Y, Zhang H, Fang X, Lin Y, Xu Y, Weng W. ACS Macro Letters, 2014, 3(2): 141.

[41]

Liu C, Fan Z, Tan Y, Fan F, Xu H. Advanced Materials, 2020, 32(12): 1907569.

[42]

Wu H, Liu X, Sheng D, Zhou Y, Xu S, Xie H, Tian X, Sun Y, Shi B, Yang Y. Polymer, 2021, 214: 123261.

AI Summary AI Mindmap
PDF

343

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/