Crystalline-Amorphous Ni3Se4-Ni Hydroxide Heterostructure as an Efficient Electrocatalyst for Oxidation Evolution Reaction

Teng Wang , Renquan Hu , Hao Wei , Zehui Wei , Meng Yan , Yong Yang

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (4) : 673 -679.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (4) : 673 -679. DOI: 10.1007/s40242-023-3108-z
Article

Crystalline-Amorphous Ni3Se4-Ni Hydroxide Heterostructure as an Efficient Electrocatalyst for Oxidation Evolution Reaction

Author information +
History +
PDF

Abstract

Developing low-cost Ni-based amorphous/crystalline composites with well-defined nanostructures is expected to achieve a highly efficient oxygen evolution reaction(OER) by exposing more active sites and enhancing the electrical conductivity, but it still remains a synthetic challenge. Here, a crystalline/amorphous composite composed of crystalline Ni3Se4 and amorphous Ni hydroxide with a multi-layered bowl-shaped nanostructure was synthesized by a simple one-step solvothermal method. By regulating the concentration of sulfate ions in the reaction solution, the single-layered nanosheets achieve a transformation into a multi-layered structure with more exposed active sites. In addition, the crystalline-amorphous heterostructure allows regulation of the interfacial electronic structures, and the decoration of Ni3Se4 can effectively enhance the electrical conductivity of composites. Benefiting from the interfacial synergy between Ni3Se4 and Ni hydroxide, the as-optimized Ni3Se4/Ni hydroxide as an OER catalyst displayed superior electrocatalytic activity with a low overpotential of 285 mV at a current density of 10 mA/cm2, a small Tafel slope of 68.3 mV/dec and remarkable stability in alkaline solution. This work offers a novel and effective method for the design of functional crystalline/amorphous composites for energy conversion and storage.

Keywords

Nickle selenide / Amorphous Ni hydroxide / Regulation of morphology / Oxygen evolution reaction

Cite this article

Download citation ▾
Teng Wang, Renquan Hu, Hao Wei, Zehui Wei, Meng Yan, Yong Yang. Crystalline-Amorphous Ni3Se4-Ni Hydroxide Heterostructure as an Efficient Electrocatalyst for Oxidation Evolution Reaction. Chemical Research in Chinese Universities, 2023, 39(4): 673-679 DOI:10.1007/s40242-023-3108-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hameed A, Batool M, Liu Z, Nadeem M A, Jin R. ACS Energy Lett., 2022, 7: 3311.

[2]

Zhang Y C, Han C, Gao J, Pan L, Wu J, Zhu X D, Zou J J. ACS Catal., 2021, 11: 12485.

[3]

Cui H, Liao H X, Wang Z L, Xie J P, Tan P F, Chu D W, Jun P. Rare Met., 2022, 41: 2606.

[4]

Suen N T, Hung S F, Quan Q, Zhang N, Xu Y J, Chen H M. Chem. Soc. Rev., 2017, 46: 337.

[5]

Song J, Wei C, Huang Z F, Liu C, Zeng L, Wang X, Xu Z J. Chem. Soc. Rev., 2020, 49: 2196.

[6]

Dong L, Chang G R, Feng Y, Yao X Z, Yu X Y. Rare Met., 2022, 41: 1583.

[7]

Ding W L, Cao Y H, Liu H, Wang A X, Zhang C J, Zheng X R. Rare Met., 2021, 40: 1373.

[8]

Hu Y, Zheng Y, Jin J, Wang Y, Peng Y, Yin J, Shen W, Hou Y, Zhu L, An L, Lu M, Xi P, Yan C. Nat. Commun., 2023, 14: 1949.

[9]

Han J, Guan J. Nano Res., 2023, 16: 3014.

[10]

Wu Z P, Lu X F, Zang S Q, Lou X W. Adv. Funct. Mater., 2020, 30: 1910274.

[11]

Yu M, Budiyanto E, Tüysüz H. Angew. Chem., Int. Ed., 2022, 61: e202103824.

[12]

Xin Y, Dai X, Lv G, Wei X, Li S, Li Z, Xue T, Shi M, Zou K, Chen Y, Liu Y. ACS Appl. Mater. Interfaces, 2021, 13: 28118.

[13]

Su D, Ford M, Wang G. Sci. Rep., 2012, 2: 924.

[14]

Zhang Y, Lim Y V, Huang S, Pam M E, Wang Y, Ang L K, Shi Y, Yang H Y. Small, 2018, 14: 1800898.

[15]

Sun D, Zhang J, Ren H, Cui Z, Sun D. J. Phys. Chem. C, 2010, 114: 12110.

[16]

Gao J, Xu C Q, Hung S F, Liu W, Cai W, Zeng Z, Jia C, Chen H M, Xiao H, Li J, Huang Y, Liu B. J. Am. Chem. Soc., 2019, 141: 3014.

[17]

Do V H, Prabhu P, Jose V, Yoshida T, Zhou Y, Miwa H, Kaneko T, Uruga T, Iwasawa Y, Lee J M. Adv. Mater., 2023, 35: 2208860.

[18]

Shen S, Wang Z, Lin Z, Song K, Zhang Q, Meng F, Gu L, Zhong W. Adv. Mater., 2022, 34: 2110631.

[19]

Xie J, Qu H, Lei F, Peng X, Liu W, Gao L, Hao P, Cui G, Tang B. J. Mater. Chem. A, 2018, 6: 16121.

[20]

Ye Z, Jiang Y, Li L, Wu F, Chen R. Adv. Mater., 2020, 32: 2002168.

[21]

Zhi Min B, Zhen Yu W, Tian Guang Z, Fan F, Na Y. Appl. Clay Sci., 2013, 75: 22. 76

[22]

Chala S A, Tsai M C, Olbasa B W, Lakshmanan K, Huang W H, Su W N, Liao Y F, Lee J F, Dai H, Hwang B J. ACS Nano, 2021, 15: 14996.

[23]

Qiu Y, Yang S, Deng H, Jin L, Li W. J. Mater. Chem., 2010, 20: 4439.

[24]

Wang T J, Liu X, Li Y, Li F, Deng Z, Chen Y. Nano Res., 2020, 13: 79.

[25]

El Gaini L, Lakraimi M, Sebbar E, Meghea A, Bakasse M. J. Hazard. Mater., 2009, 161: 627.

[26]

Huang W, Li J, Liao X, Lu R, Ling C, Liu X, Meng J, Qu L, Lin M, Hong X, Zhou X, Liu S, Zhao Y, Zhou L, Mai L. Adv. Mater., 2022, 34: 2200270.

[27]

Duan G, Cai W, Luo Y, Sun F. Adv. Funct. Mater., 2007, 17: 644.

[28]

Ni B, Wang X. Chem. Sci., 2015, 6: 3572.

[29]

Wei L, Du M, Zhao R, Lv F, Li L, Zhang L, Zhou D, Su J. J. Mater. Chem. A, 2022, 10: 23790.

[30]

Huang Y, Wang J J, Zou Y, Jiang L W, Liu X L, Jiang W J, Liu H, Hu J S. Chin. J. Catal., 2021, 42: 1395.

[31]

Liao H, Luo T, Tan P, Chen K, Lu L, Liu Y, Liu M, Pan J. Adv. Funct. Mater., 2021, 31: 2102772.

[32]

Kwak I H, Im H S, Jang D M, Kim Y W, Park K, Lim Y R, Cha E H, Park J. ACS Appl. Mater. Interfaces, 201, 8: 5327.

[33]

Bai Y, Wu Y, Zhou X, Ye Y, Nie K, Wang J, Xie M, Zhang Z, Liu Z, Cheng T, Gao C. Nat. Commun., 2022, 13: 6094.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/