CeO2 Supported on Reduced Graphene Oxide as Li-O2 Battery Cathode

Zerui Fu , Shu Wang , Haohan Yu , Meilin Nie , Xilan Feng , Xintao Zuo , Lichao Fu , Dapeng Liu , Yu Zhang

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (4) : 636 -641.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (4) : 636 -641. DOI: 10.1007/s40242-023-3107-0
Article

CeO2 Supported on Reduced Graphene Oxide as Li-O2 Battery Cathode

Author information +
History +
PDF

Abstract

Li-O2 battery(LOB) has an ultrahigh specific capacity(3500 W·h/kg), however, its slow kinetics of oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) at cathode often leads to a high overpotential, a limited discharge capacity, and a poor cycling performance. Therefore, it is important to design and prepare cathode materials with a excellent catalytic activity. In this study, CeO2 nanoparticles(NPs) supported on reduced graphene oxide(rGO) have been prepared and employed as cathode. Compared with either CeO2 NPs or rGO, CeO2/rGO cathode greatly improves the discharge capacity(10644 mA·h/g at a current density of 100 mA/g) and the cycling performance(95 cycles at 200 mA/g with a limited capacity of 500 mA·h/g) by virtue of the good conductivity of rGO and the oxygen storage/release capability of CeO2.

Keywords

Li-O2 battery / Cathode / CeO2 nanoparticle / Reduced graphene oxide

Cite this article

Download citation ▾
Zerui Fu, Shu Wang, Haohan Yu, Meilin Nie, Xilan Feng, Xintao Zuo, Lichao Fu, Dapeng Liu, Yu Zhang. CeO2 Supported on Reduced Graphene Oxide as Li-O2 Battery Cathode. Chemical Research in Chinese Universities, 2023, 39(4): 636-641 DOI:10.1007/s40242-023-3107-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chi X W, Li M L, Di J C, Bai P, Song L N, Wang X X, Li F, Liang S, Xu J J, Yu J H. Nature, 2021, 592(7855): 551.

[2]

Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M. Nat. Mater., 2011, 11(1): 19.

[3]

Hao Z M, Liu D P, Ge H Y, Zuo X T, Feng X L, Shao M Z, Yu H H, Yuan G B, Zhang Y. Chem. Res. Chinese Universities, 2022, 38(3): 823.

[4]

Chen K, Yang D Y, Huang G, Zhang X B. Acc. Chem. Res., 2021, 54(3): 632.

[5]

Wang X X, Guan D H, Li F, Li M L, Zheng L J, Xu J J. Adv. Mater., 2022, 34(2): 2104792.

[6]

Li D. Y., Zhao L. L., Wang J., Yang C. P., Adv. Energy Mater., 2023, 2204057

[7]

Zhu Z, Lv Q L, Ni Y X, Gao S N, Geng J R, Liang J, Li F J. Angew. Chem. Int. Ed., 2022, 61(12): e202116699.

[8]

Zhou Y, Gu Q F, Yin K, Li Y J, Tao L, Tan H, Yang Y, Guo S J. Angew. Chem. Int. Ed., 2022, 61(26): e202201416.

[9]

Wang L B, Chen S Y, Hei J P, Gao R, Liu L, Su L W, Li G R, Chen Z W. Nano Energy, 2020, 71: 104570.

[10]

Cao D, Bai Y, Zhang J F, Tan G Q, Wu C. Nano Energy, 2021, 89: 106464.

[11]

Ottakam T M M, Freunberger S A, Peng Z, Bruce P G. J. Am. Chem. Soc., 2013, 135: 494.

[12]

Yan B L, Liu D P, Feng X L, Shao M Z, Zhang Y. Chem. Res. Chinese Universities, 2020, 36(3): 425.

[13]

Abraham K M, Jiang Z J. Electrochem. Soc., 199, 143(1): 1.

[14]

Sun B, Munroe P, Wang G. Sci. Rep., 2013, 3: 2247.

[15]

Xu J J, Chang Z W, Wang Y, Liu D P, Zhang Y, Zhang X B. Adv. Mater., 201, 28(43): 9620.

[16]

Jian Z L, Liu P, Li F J, He P, Guo X W, Chen M W, Zhou H S. Angew. Chem. Int. Ed., 2014, 53(2): 442.

[17]

Liu T, Zhang X H, Huang T, Yu A S. Nanoscale, 2018, 10(33): 15763.

[18]

Lee G H, Sung M C, Kim J C, Song H J, Kim D W. Adv. Energy Mater., 2018, 8(36): 1801930.

[19]

Lu J, Lee Y J, Luo X Y, Lau K C, Asadi M, Wang H H, Brombosz S, Wen J G, Zhai D Y, Chen Z H, Miller D J, Jeong Y S, Park J B, Fang Z G Z, Kumar B, Salehi K A, Sun Y K, Curtiss L A, Amine K. Nature, 201, 529(7586): 377.

[20]

Hou Y, Wang J, Liu J Q, Hou Ch X, Xiu Z H, Fan Y Q, Zhao L L, Zhai Y J, Li H Y, Zeng J, Gao X, Zhou S, Li D W, Li Y, Dang F, Liang K, Chen P, Li C M, Zhao D Y, Kong B. Adv. Energy Mater., 2019, 9(40): 1901751.

[21]

Wang Y, Wang X X, She P, Guan D H, Song L N, Xu J J. Chem. Res. Chinese Universities, 2022, 38(1): 200.

[22]

Hu C G, Song L, Zhang Z P, Chen N, Feng Z H, Qu L T. Energy Environ. Sci., 2015, 8(1): 31.

[23]

Zhang P, Wang R T, He M, Lang J W, Xu S, Yan X B. Adv. Funct. Mater., 201, 26(9): 1354.

[24]

Zhao Y, Yang L, Chen S, Wang X, Ma Y, Wu Q, Jiang Y, Qian W, Hu Z. J. Am. Chem. Soc., 2013, 135(4): 1201.

[25]

Jiang H R, Zhao T S, Shi L, Tan P, An L. J. Phys. Chem. C, 201, 120(12): 6612.

[26]

Yang C, Wong R A, Hong M, Yamanaka K, Ohta T, Byon H R. Nano Lett., 201, 16(5): 2969.

[27]

Yuan L F, Song K F, Liu Z Y, Yu Y W, Yang B Q, Qiao H D, Hu X L. Electrochimica Acta, 2021, 368: 137645.

[28]

Guo S Q, Wang J A, Sun Y X, Peng L C, Li C J. Chem. Eng. J., 2023, 452: 139317.

[29]

Jin X, Feng X L, Liu D P, Su Y T, Zhang Z, Zhang Y. Chem. J. Chinese Universities, 2020, 41(4): 652.

[30]

Ma S Y, Lu Y C, Zhu X D, Li Z J, Liu Q C. ACS Appl. Mater. Interfaces, 2022, 14(19): 22104.

[31]

Liu Y, Ma C, Zhang Q H, Wang W, Pan P F, Gu L, Xu D D, Bao J C, Dai Z H. Adv. Mater., 2019, 31(21): 1900062.

[32]

Ogada J J, Ipadeola A K, Mwonga P V, Haruna A B, Nichols F, Chen S W, Miller H A, Pagliaro M V, Vizza F, Varcoe J R, Meira D M, Wamwangi D M, Ozoemena K I. ACS Catalysis, 2022, 12(12): 7014.

[33]

Wang H L, Robinson J T, Li X L, Dai H J. J. Am. Chem. Soc., 2009, 131(29): 9910.

[34]

Jiang L H, Yao M G, Liu B, Li Q J, Liu R, Lv H, Lu S C, Gong C, Zou B, Cui T, Liu B B, Hu G Z, Wågberg T. J. Phys. Chem. C, 2012, 116(21): 11741.

[35]

Shao M Z, Feng X L, Liu D P, Zhang Y. Mater. Chem. Front., 2023, 7(4): 745.

[36]

Feng X L, Liu D P, Yan B L, Shao M Z, Hao Z M, Yuan G B, Yu H H, Zhang Y. Angew. Chem. Int. Ed., 2021, 60(34): 18552.

[37]

Sun H C, Wang H, Qu Z P. ACS Catalysis, 2023, 13(2): 1077.

[38]

Song Y J, Kong F P, Sun X, Liu Q S, Li X D, Ren L P, Xie Y, Shen Y B, Wang J J. Adv. Energy Mater., 2022, 13(4): 2203660.

[39]

Kang J, Yu J S, Han B. J. Phys. Chem. Lett., 201, 7(14): 2803.

[40]

Yu J, Zhen Z. ACS Catal., 2015, 5(7): 4309.

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/