Fe-substituted Polyoxometalate-based Spherical Assemblies as Catalysts for Olefin Epoxidation

Xinjie Huang , Ziru Wang , Tian Wang , Wei Wang , Peilei He

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (4) : 660 -665.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (4) : 660 -665. DOI: 10.1007/s40242-023-3092-3
Article

Fe-substituted Polyoxometalate-based Spherical Assemblies as Catalysts for Olefin Epoxidation

Author information +
History +
PDF

Abstract

Fe-substituted polyoxometalate(Na15[(P2W15O56)2Fe3])(Fe-POM)-based composite (C19H42N)15[(P2W15O56)2Fe3](CTAB-Fe-POM) was successfully synthesized through an ion-exchanged method. Then, it was self-assembly in a mixed solvent to form surfactant encapsulated complex nanosphere(SECN). The as-prepared SECN was employed as the catalyst for the epoxidation of olefins with H2O2. Compared with (C19H42N)6[α-P2W18O62](CTAB-P2W18), SECN shows a higher activity in the epoxidation of cis-cyclooctene with a high yield(97.3%). The extraordinary performance could be attributed to the amphiphilic module of cetyltrimethylammonium bromide(CTAB), which improves the dispersion of the catalyst in CH3CN and accelerates the catalytic reaction. And Fe atom can rapidly activate H2O2, forming the active intermediate Fe-OOH to realize the transfer of active “O”. Furthermore, the catalyst could be reused five times without significant loss of activity.

Keywords

Polyoxometalate / Self-assembly / Epoxidation / Nanosphere / Mechanism

Cite this article

Download citation ▾
Xinjie Huang, Ziru Wang, Tian Wang, Wei Wang, Peilei He. Fe-substituted Polyoxometalate-based Spherical Assemblies as Catalysts for Olefin Epoxidation. Chemical Research in Chinese Universities, 2023, 39(4): 660-665 DOI:10.1007/s40242-023-3092-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Banerjee D, Jagadeesh R V, Junge K, Pohl M M, Radnik J, Brückner A, Beller M. Angew. Chem. Int. Ed., 2014, 53: 4359.

[2]

Zhang M R, Singh V, Hu X F, Ma X Y, Lu J K, Zhang C, Wang J P, Niu J Y. ACS Catal., 2019, 9: 7641.

[3]

Fan Z F, Lin B, Liu Y Q, Liu Y, Cheng M S. Catal. Commun., 2021, 158: 106341.

[4]

Zhang Z X, Li D N, Zhu Q Q, Hara M, Li Y S, Ueda W. New J. Chem., 2021, 45: 21624.

[5]

Zhou Z H, Dai G Y, Ru S, Yu H, Wei Y G. Dalton Trans., 2019, 48: 14201.

[6]

Zhang T, Solé-Daura A, Fouilloux H, Poblet J M, Proust A, Carbó J J, Guillemot G. ChemCatChem, 2021, 13: 1220.

[7]

Weerakkody C, Biswas S, Song W Q, He J K, Wasalathanthri N, Dissanayake S, Kriz D A, Dutta B, Suib S L. Appl. Catal. B, 2018, 221: 681.

[8]

Chen X, Zou Y, Zhang M K, Gou W Y, Zhang S, Qu Y Q. J. Mater. Chem. A, 2022, 10: 6016.

[9]

Ciriminna R, Albanese L, Meneguzzo F, Pagliaro M. ChemSusChem, 201, 9: 3374.

[10]

Srour H, Le Maux P, Chevance S, Simonneaux G. Coord. Chem. Rev., 2013, 257: 3030.

[11]

Long D L, Burkholder E, Cronin L. Chem. Soc. Rev., 2007, 36: 105.

[12]

Altenau J J, Pope M T, Prados R A, So H. Inorg. Chem., 1975, 14: 417.

[13]

Venturello C, D’Aloisio R. J. Org. Chem., 1988, 53: 1553.

[14]

Zhao S, Jia Y Q, Song Y F. Appl. Catal. A: Gen., 2013, 453: 188.

[15]

Long D L, Tsunashima R, Cronin L. Angew. Chem. Int. Ed., 2010, 49: 1736.

[16]

Zhou Y, Chen G J, Long Z Y, Wang J. RSC Adv., 2014, 4: 42092.

[17]

Liu Q D, Zhang Q H, Shi W X, Hu H S, Zhuang J, Wang X. Nat. Chem., 2022, 14: 433.

[18]

Liu Q D, He P L, Yu H D, Gu L, Ni B, Wang D, Wang X. Sci. Adv., 2019, 5: eaax1081.

[19]

Nisar A, Zhuang J, Wang X. Chem. Mater., 2009, 21: 3745.

[20]

Nisar A, Zhuang J, Wang X. Adv. Mater., 2011, 23: 1130.

[21]

Nisar A, Xu X X, Shen S L, Hu S, Wang X. Adv. Funct. Mater., 2009, 19: 860.

[22]

Song W J, Ryu Y O, Song R, Nam W. J. Biol. Inorg. Chem., 2005, 10: 294.

[23]

Chen K, Costas M, Kim J, Tipton A K, Que L. J. Am. Chem. Soc., 2002, 124: 3026.

[24]

Graham C R, Finke R G. Inorg. Chem., 2008, 47: 3679.

[25]

Contant R, Klemperer W G, Yaghi O. Inorg. Synth., 1990, 27: 104.

[26]

Anderson T M, Zhang X, Hardcastle K I, Hill C L. Inorg. Chem., 2002, 41: 2477.

[27]

Nikoloudakis E, Karikis K, Laurans M, Kokotidou C, Solé-Daura A, Carbó J J, Charisiadis A, Charalambidis G, Lzzet G, Mitraki A, Douvas A M, Poblet J M, Proust A, Coutsolelos A G. Dalton Trans., 2018, 47: 6304.

[28]

Izarova N V, Maksimovskaya R I, Willbold S, Kögerler P. Inorg. Chem., 2014, 53: 11778.

[29]

Teague C M, Li X, Biggin M E, Lee L, Kim J, Gewirth A A. J. Phys. Chem. B, 2004, 108: 1974.

[30]

D’Souza L, Noeske M, Richards R M, Kortz U. J. Colloid Interface Sci., 2013, 394: 157.

[31]

Rezvani M A, Khandan S. Appl. Organomet. Chem., 2018, 32: e4524.

[32]

Li J, Zhao S H, Li Z, Liu D, Chi Y N, Hu C W. Inorg. Chem., 2021, 60: 7785.

[33]

Zhou C D, Han C Y, Liu N S. J. Environ. Sci., 2024, 135: 232.

[34]

Maksimchuk N V, Ivanchikova I D, Maksimov G M, Eltsov I V, Evtushok V Y, Kholdeeva O A, Lebbie D, Errington R J, Solé-Daura A, Poblet J M, Carbo J J. ACS Catal., 2019, 9: 6262.

[35]

Ma W B, Yuan H Y, Wang H F, Zhou Q Q, Kong K, Li D F, Yao Y F, Hou Z S. ACS Catal., 2018, 8: 4645.

[36]

Ho R Y, Roelfes G, Feringa B L, Que L. J. Am. Chem. Soc., 1999, 121: 264.

[37]

Roelfes G, Vrajmasu V, Chen K, Ho R Y, Rohde J U, Zondervan C, Crois R M, Schudde E P, Lutz M, Spek A L, Hage R, Feringa B L, Munck E, Que L. Inorg. Chem., 2003, 42: 2639.

[38]

Das B, Baruah M J, Sharma M, Sarma B, Karunakar G V, Satyanarayana L, Roy S, Bhattacharyya P K, Borah K K, Bania K K. Appl. Catal. A: Gen., 2020, 589: 117292.

[39]

Park M J, Lee J, Suh Y, Kim J, Nam W. J. Am. Chem. Soc., 200, 128: 2630.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/